IEA Technology Collaboration Programme on Heat Pumping Technologies (HPT TCP)

Stephan Renz, Chairman IEA HPT TCP

Research, Development, Demonstration, and Deployment of Heat Pumping Technologies

About Heat Pumping Technologies TCP

A Technology Collaboration Programme (TCP) within the IEA since 1978

An international framework of **cooperation** and **networking**

A contributor to technology improvements by RDD&D projects

Collaboration & Communication

A forum to exchange of knowledge and experience

IEA HPT-Vision and Collaboration with other TCPs

"Heat pumping technologies are the cornerstone

- for a secure, affordable, high-efficiency, clean and net-zero energy system
- for heating, cooling and refrigeration across multiple applications and contexts."

HPT TCP Organization and Management

Executive Committee

Heat Pump Centre

National teams

National experts meeting

Annexes

- **Executive Committee:** The board of HPT TCP one vote per member country
- The Heat Pump Centre: The central program office and communication center of HPT TCP
- **National Teams:** Organizations representing national HPT activities. A forum for discussion networking and creation of new ideas. Meet at joint National Experts meetings.
- **Annexes:** Elaborating new knowledge through 14th IEA COllaborative RDD&D work

RDD&D Priority Areas 2018 – 2023: Applications

Annex = Project with international collaboration of member countries. Duration is typically 3 - 4 years

Affordable and competitive technologies for heating

- Annex 46: Domestic hot water heat pumps
- Annex 50: Heat Pumps in Multi-Family Buildings for heating +DHW
- Annex 51: Acoustic Signature of Heat Pumps
- Annex 52: Long-term performance of GSHP Systems
- Annex 55: Comfort and Climate Box
 Mission Innovation
- Annex 60: Retrofit Heat Pump in Larger Non-domestic Buildings
- Heat Pumps in residential multifamily buildings in cities

More efficient cooling and airconditioning

- Annex 53: Advanced Cooling/Refrigeration Technologies
- CCB for warm and humid climates

Flexible, sustainable, and clean system solutions

- Annex 47: Heat Pumps in DHC systems
- Annex 49: Design and integration of heat pumps for nZEB
- Annex 57: Heat pumps in multi vector energy systems
- Heat Pumps for Positive Energy Districts
- Sector Coupling Survey of practical examples

Digitalisation and Internet of Things

- Annex 56: Internet of Things for Heat Pumps
- Common communication protocols for heat pumps
- Using data to improve technology

New or special markets and applications

- Annex 48: Industrial Heat pumps – second phase
- Annex 58: High Temperature Heat Pumps
- Annex 59: Heat Pumps for Drying

New, alternative or natural refrigerants with lower global warming potential

- Annex 54: Heat Pump Systems with low GWP Refrigerants
- Safety Measures on Flammable Refrigerants

Horizontal themes

- Placement Impact on Heat Pump Acoustics
- Heat Pumps in a Circular Economy
- New or alternative business models

www.heatpumpingtechnologies.org

RDD&D Priority Areas 2023 - 2028

System integration

Robust, sustainable and affordable value chains

Extending operation range and applications

New technologies and refrigerants

Sector coupling, energy efficiency, flexibility, resilience, storage, digitalization, positive energy districts

- Annex 56: IoT for Heat Pumps
- Annex 57: Heat pumps in multivector energy systems
- Annex 61: Heat Pumps in Positive Energy Districts NEW
- CCB for cooling and dehumidification
- Sector Coupling Survey of practical examples
- Digital Services for Heat Pumps

Improving affordability, securing value chains, circular economy, removing barriers for mass deployment

- Annex 63 Placement Impact on Heat Pump Acoustics NEW
- Heat Pumps in a Circular Economy
- New or alternative business models for heat pumps

To fulfill demand from all climate zones, new markets, new applications and new demand. Refrigeration in emerging countries.

- Annex 60: Retrofit Heat Pump in Larger Non-domestic Buildings
- Annex 58: High Temperature Heat Pumps
- Annex 59: Heat Pumps for Drying
- Annex 62 Heat Pumps in residential multifamily buildings in cities NEW

Non-traditional heat pumping technologies (for heating and cooling)

Refrigerants (low GWP, safety etc.)

- Annex 53: Advanced cooling and refrigeration technology development
- Annex 54: Heat Pump Systems with low GWP Refrigerants
- Annex 64: Safety Measures on Flammable Refrigerants NEW

Ideation according to the Strategic Work Plan of HPT TCP

Outcome from last National Experts Meeting October 2021 in Nuremberg

Next meeting in October 2023

Progress of Recognition of Heat Pumping Technologies

ETP2023

Heat pumps

one of six,

important

clean energy

most

ETP2020

ETP2017 Heat technologies are a critical enabler to ambitions

Heat pumps need to become the norm for heating in buildings, contribute to decarbonizat ion of the industrial sector and DH grids

IEAs NZE by 2050 Roadmap:

"In 2045 50% of the heating demand should be met by heat pumps"

IEAs 10-point plan to reduce dependance on Russian gas

Action 1

Speed up the replacement of gas boilers with heat pumps

Impact: Reduces gas use for heating by an

"Double the planned yearly pace of deployment of heat pumps"

Net Zero Industry Act

Heat Pump Action Plan

Heat Pumps prioritized in US Inflation Reduction Act (IRA) Defence Production Act (DPA)

From Martin Forsén's (EHPA) plenary lecture at the 13th IEA **Heat Pump Conference 2021**

pumping ETP2008 Heat pumps reach mentioned in climatic

technologies analysed

The Future of Heat Pumps

Similar trends for recognition of heat pumps in other regions of the world

first

ETP

IEA HPT Executive Committee

Stephan Renz (Chairman) info@renzconsulting.ch

Heat Pump Centre

Monica Axell (General Manager)

monica.axell@ri.se

Caroline Haglund Stignor (Assistant Manager)

caroline.haglundstignor@ri.se

Metkel Yebiyo, Technical Expert metkel.yebiyo@ri.se

hpc@heatpumpcentre.org www.heatpumpingtechnologies.org

www.heatpumpingtechnologies.org

