

Social Housing Renovated, France

Renovation of DHW production in 12 social dwellings

The DHW production was ensured by individual electric water heaters until now. The replacement of these by a collective heat pump induces a 50% reduction on the electric bill due to DHW production.

F1.4

Key facts

Buildings

Location	Soissons, France
First Construction	1975
Project type	retrofit
Heat distribution	collective
Heated area	841m ² living
Level of insulation	average

Heat pump and source

Number of	1
Installed power	11kW
Operation mode	DHW only
Heat source	Outside air

Domestic hot water

Type of system	central
Max. temperature	50°C
Hot water storage	1500l
Distribution system	Thermodynamic loop heater

Other information

Electric energy consumption	
2013 for DHW	29 kWhep/m ² .yr
Renewables ratio	50%

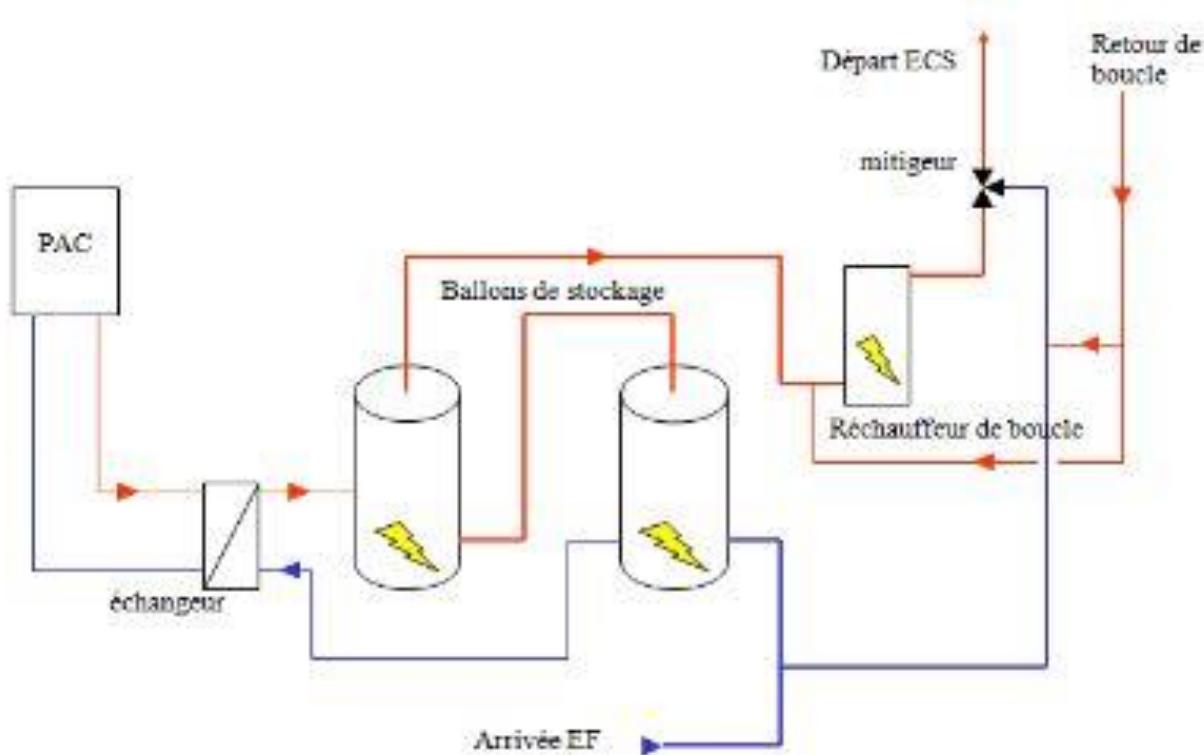
Some figures

- Before renovating, the primary energy consumption due to DHW production was about 75 kWhep/m².yr.
- Final objective for ep consumption is 24 kWhep/m².yr.

In this social housing building, heating is supplied by a renovated district heating grid connected to a wood-fired heating plant.

Until now, the Domestic Hot Water production was ensured by individual electrical water heaters. The replacement of these individual solutions (in twelve dwellings) by a collective heat pump induces a 50% reduction on the electric bill due to domestic hot water production.

HP outside unit

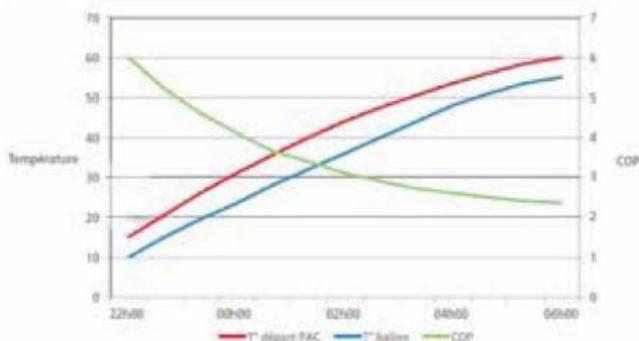


Hydraulic Station

atlantic
Thermodynamic Loop Heater

Social Housing Renovated, France

Description of the technical concept


The system consists of:

- A 11kW Atlantic® air-to-water heat pump
- Two storage tanks with 750l capacity each
- An Atlantic® thermodynamic loop heater

The system functioning is based on an accumulated mode: the storage tanks allow to store the daily DHW needs. Then, the heat pump produces heat during the night, for eight hours continuously.

Even if the outside air temperatures are lower during the night, this type of operation offers advantages in terms of performances:

- After a day of draw-offs, the volume of water in the tanks is completely cold
→ optimized COP
- An operation during night allows to benefit from lower electricity tarrifs

