The project investigated the flexible use of heat pumps in buildings and district heating networks for participation in various electricity markets, as well as the technical boundary conditions for this.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Content</th>
</tr>
</thead>
</table>
| **Task 1: Energy market analysis** | • Elaboration of energy situation and trends
• Overview of existing and future heat sources |
| **Task 2: Case studies and best practice examples** | • Screening and characterization of existing DH systems, demo systems and R&D projects of flexibility applications with HPs |
| **Task 3: Development of representative and promising solution concepts** | • Analysis of different concepts for flexible HP operation
• Evaluation of case studies |
| **Task 4: Evaluation of different flexibility options** | • Analysis of possible applications of HPs technologies and their application markets |
| **Task 5: Evaluation of business models and analysis of barriers** | • Implementation barriers including non-technical obstacles and discussion solutions to overcome barriers
• Derivation of innovative business models |

Start 11/2020
End 12/2023

Participating countries
- Denmark (Lead)
- Germany
- Austria
- Sweden
- Netherlands

https://heatpumpingtechnologies.org/annex57
General overview

Potential applications for flexible heat pump use

<table>
<thead>
<tr>
<th>Price signals and fields of applications</th>
<th>Prerequisites</th>
<th>Implementation effort</th>
<th>Indicative profitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot Markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day-ahead</td>
<td>• Variable tariffs
• DA-price projection
• Coordination btw trading & supplier</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Intraday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balancing markets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>• Pooling & PQ
• Load Control
• Settlement
• DSO-Veto</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imbalance settlement</td>
<td>• Imbalance responsibility
• Short-term load control</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Local flexibility markets</td>
<td>• Flexibility market in place?</td>
<td>High</td>
<td>?</td>
</tr>
<tr>
<td>Maximise own consumption
(PV, Energy community)</td>
<td>• Weather & load projection
• Energy community: settlement</td>
<td>Low</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Existing business models by country

Proven business model in practice: **Exploit variable spot market prices**

- iDM Energiesysteme” is an innovative Austrian heat pump manufacturer located in Eastern Tirol. Their product “myiDM +energy” aims to consume electricity preferably when electricity prices are low.

- Prerequisite for participation is an iDM heat pump with the corresponding software version, as well as a smart meter and an internet connection. Further, the consumer needs a variable electricity tariff. Currently, the system supports three Austrian electricity suppliers with flexible tariffs.

- The heat pump system can use the heating buffer, the domestic hot water storage as well as thermal building masses as energy storages to shift electricity consumption in time.

Innovative business models

Two main innovative business models have been identified

Local flexibility markets
Support of the distribution grid

Provision of balancing services
Heat pumps can be aggregated (in case of small-scale applications) to provide balancing services to the transmission grid
Innovative business models - business canvas

Provision of balancing services: Pooling of small scale heat pumps

Business model applicable for: Balancing service providers

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>UNIQUE VALUE PROPOSITION</th>
<th>UNFAIR ADVANTAGE</th>
<th>CUSTOMER SEGMENTS</th>
</tr>
</thead>
</table>
| • Increased need for balancing power & energy in the electricity system due to volatile renewable sources
• Fast reaction times and high reliability are required | • Heat pumps can provide balancing services, either on their own (large-scale heat pumps) or aggregated (small scale heat pumps)
- Provided balancing power
- Activated balancing energy
- Reduction in electricity costs (energy & grid costs) | • Supporting the electricity grid
• Lowering the heat costs
• Free additional heat in case of negative balancing reserve
• Use of renewable technologies | • Cost reduction for end customers without negative impact on their comfort
• No additional hardware costs in case of smart heat pumps | • Household and commercial customers
• Heating grid operators
• Heating plant operators |

<table>
<thead>
<tr>
<th>KEY METRICS</th>
<th>CHANNELES</th>
<th>COST STRUCTURE</th>
<th>REVENUE STREAMS</th>
</tr>
</thead>
</table>
| • Provided balancing power
- Activated balancing energy
- Reduction in electricity costs (energy & grid costs) | • Cooperations with heat pump manufacturers and installers
- Raising awareness of customers through marketing | • Fixed costs:
- Personnel
- IT-costs
- Connection to the balancing market
- Connection to an aggregator (small scale heat pumps) | • Revenues from providing balancing services
• Reduced electricity grid costs
• Reduced electricity energy costs |

Total electricity cost

![Total electricity cost chart](chart.png)
Innovative business models - business canvas

Local flexibility markets: Support of the distribution grid

Business model applicable for: DSO

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>SOLUTION</th>
<th>UNIQUE VALUE PROPOSITION</th>
<th>UNFAIR ADVANTAGE</th>
<th>CUSTOMER SEGMENTS</th>
</tr>
</thead>
</table>
| • Grid constraints due to too much electric load during certain hours of the day
• Increased electrification of transport and heating sector further increases possible load problems | • Offer interruptible tariffs to customers and curtail their consumption during critical times or offer time-variant grid tariffs to incentivize curtailment. | • Relatively easy implementation
• Improvement of local grid situation without any additional costs | • No direct competition since DSO is fixed for each customer | • Households |

KEY METRICS

- Reduction in electric load during critical times

CHANNELS

- Raising awareness of customers through marketing

COST STRUCTURE

- Reduced earnings from grid tariffs
- Usually, second electricity meter is necessary

REVENUE STREAMS

- Reduced or delayed costs for grid reinforcement measures
Barriers of flexibility use

During the project, a number of barriers were identified and grouped:

<table>
<thead>
<tr>
<th>Economic barrier</th>
<th>Grid tariffs consist a large share of the electricity bill</th>
<th>Risk of end-user intervention</th>
<th>Maintenance costs</th>
<th>Reduced efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory barrier</td>
<td>Local flexibility markets not yet developed</td>
<td>Regulatory changes not yet foreseeable</td>
<td>Country-specific regulatory barriers</td>
<td>Minimum bid size</td>
</tr>
<tr>
<td>Further barriers</td>
<td>Knowledge of operators</td>
<td>Cyber-Security</td>
<td>Acceptance of end-users</td>
<td>Incentives and information from OEM</td>
</tr>
<tr>
<td>Technical barriers</td>
<td>Time</td>
<td>Power / Efficiency</td>
<td>Temperature</td>
<td>Location</td>
</tr>
</tbody>
</table>

High barrier | Medium barrier | Low barrier
Summary and conclusion

• Flexibility provision with heat pumps is a very relevant topic across Europe at the moment

• Some types of flexibility services of them are already at a high market readiness level and can form the basis of successful business models in the near future

• The most commonly applied business model in the analyzed case studies was a combination of spot market participation and the provision of balancing services. This business model was already used in various research projects in Sweden, Denmark, Austria and Germany

• Provision of various balancing services showed promising reductions in overall energy costs
 • In Sweden, different types of FCR and aFRR showed the highest cost reduction, while mFRR was slightly less profitable
 • In Denmark, aFRR showed the best results, followed by FCR and then mFRR
 • In Austria, aFRR showed significantly higher cost reductions than mFRR