Homes for flexibility, Sweden

Investigate possibilities for demand response of heating and domestic hot water production in homes with electrical heaters and heat pumps.

KEY FACTS

RD&D Status:
Ongoing demonstration and field measurement

Type of heat pump:
Decentralized heat pumps for single family buildings.

Building description:
Swedish single family buildings

Energy distribution System:
Hydronic system in the buildings

Power supply:
Electric grid

Energy Storage:
Building envelope

Control for the flexible heat pump operation:
Remotely control via the heat pump manufacturers API.

Heat source:
Geothermal, air and exhaust air.

Summary of the project:

In the field measuring part of the project approx. 10, heat pump heated, small family houses are equipped with measuring equipment, developed using of the shell parts. Temperature, humidity, electricity use as well as several heat pump parameters are monitored. The heat pumps are then remotely controlled using the manufacturers application programming interface (API). Different controlling strategies are tested with the aim of providing beneficial load shedding for the local electricity grid. The actual grid benefits, heat pump behaviour as well as comfort and interest from occupants are analysed.

Delivered by: Team Sweden
Expected results:

- Better understanding of the flexibility potential as well as identifying complexities and practical issues.
- Finding the practical potential of flexibility from an aggregated cluster of small family houses.
- Better understanding of the practical possible benefits from grid owners compared to the cost and challenges of aggregating flexibility from small family houses.

FACTS ABOUT THE PROJECT

Place:
Sweden / various locations

Time Frame:
2021-2023

Project leader:
RISE Research Institutes of Sweden

Project partners:
Embriq Sweden AB
Nibe AB
Mitsubishi Electric Europe B.V.

Published articles:

Contact Information/Links
Morgan Willis, morgan.willis@ri.se

Delivered by: Team Sweden