Summary of Research on Shape Optimized Air-to-Refrigerant Heat Exchangers

James Tancabel, Vikrant C. Aute

June 13, 2022

Presented at the IEA Annex-54 Workshop
Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Building Technologies Office Award Number DE-EE0008221. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This work was also supported in part by the members of the Modeling & Optimization Consortium at University of Maryland

Project Team
NGHX Team at Univ. of MD: Tancabel, J., Klein, E., Muehlbauer, J, Aute, V., Hwang, Y., and Radermacher, R.
Heat Transfer Technologies LLC: Shabtay, Y, and Black, J.
Oak Ridge National Laboratory: Zhang, M.
Contents

• Introduction & Motivation
• HX Optimization Framework
• Applications
 • Example Results
 • Summary
• Conclusion
Introduction

• **Energy End Use**
 • Residential & commercial buildings accounted for ~40% of total U.S. energy consumption in 2021\(^1\)
 • HVAC&R accounts for ~55% of residential building & ~40% of commercial building energy use

• **System Energy Efficiency Standards**
 • IEA predicts that global stock of building A/C systems will increase to 5.6 billion by 2050\(^2\)
 • Starting in 2015, residential A/C & heat pump systems must have Seasonal Energy Efficiency Ratio ≥ 14.0\(^3\)

• **Refrigerants**
 • Kigali Amendment calls for significant reduction in HFC usage\(^4\), increased demand for systems utilizing HCs, HFOs, & other natural refrigerants (e.g., CO\(_2\), NH\(_3\), H\(_2\)O, C\(_3\)H\(_8\), etc.)
 • Reducing refrigerant charge can lead to lower leakage
 • Less environmental impact (Ozone depletion, global warming, etc.)
Air-To-Refrigerant Heat Exchangers

• Air-to-refrigerant heat exchangers (HXs) are critical HVAC&R components
 • Compact HXs have potential to increase energy efficiency & reduce environmental impact
 • Doubling condenser heat transfer coefficient can reduce cycle energy consumption by ~10-15%[2]
 • Finless HXs with small diameter tubes (<5.0mm) are more compact, utilize less refrigerant, and can outperform finned HXs[1-8]
 • HX Modeling and Optimization[9]
 • Investigate novel HX geometries prior to prototyping & experimentation
• Enabling Technologies
 • Computational: CFD / FEA, Multi-Objective Genetic Algorithm (MOGA), Approximation-Assisted Optimization (AAO)
 • Manufacturing techniques: Additive Manufacturing (AM), Hybrid manufacturing

Microchannel HX
Tube-fin A-Coil HX
Shape-optimized HX[5]
Bifurcating bare tube HX[6]
Challenges in Heat Exchanger Commercialization

- **Novelty challenges**
 - Novel designs must be at least 20% better with significant reductions in refrigerant charge
 - Novel design tools require expertise and significant time investment in advanced computing and fluid & structural analyses
 - Lack of heat transfer and fluid flow fundamentals & correlations for novel tube designs

- **Manufacturing challenges**
 - Component availability
 - Joining / manufacturing techniques
 - Product qualification

- **Operational challenges**
 - Flow maldistribution
 - Fouling and wetting
 - Noise and vibration
Goal: Next Generation Heat Exchangers

Investigations

• Shape optimized air-to-refrigerant heat exchangers
• Compare optimal designs for various current and lower-GWP refrigerants for residential AC systems
HX Optimization Framework

Concept Heat Exchanger — Parameterize Geometry — Manufacturing Constraints — Optimization - MOGA

- Current Technology
- Manufacturable Designs
- Best Designs

Optimized HX

Air ΔP, Volume, Mat’l, Heat Load, Max Stress, …

PPFSA = Parallel Parameterized Fluid & Structural Analysis | MOGA = Multi-Objective Genetic Algorithm
R410A / R32 / R454B Condenser

Background:
- Application: Nominal 5.28 kW air-to-R410A condenser
- Refrigerants: R410A, R32, R454B
- Baseline HX\(^{[11]}\): Tube-fin HX; Cu Tube + Al Fin
- Optimized Tube Shape: NTHX1\(^{[9]}\)
- Two fluid passes (60% / 40%)

\[
\begin{align*}
\min \Delta P_{\text{air}} \text{, } \min V_{\text{HX}} \\
\text{s.t.} \\
\dot{Q}_{\text{BL}} \leq \dot{Q} \leq 1.1 \cdot \dot{Q}_{\text{BL}} \\
\Delta P_{\text{air}} \leq 2.0 \cdot \Delta P_{\text{air,BL}} \\
\Delta P_{\text{Ref}} \leq \Delta P_{\text{Ref,BL}} \\
V_{\text{HX}} \leq 0.8 \cdot V_{\text{HX,BL}} \\
FA \leq FA_{\text{BL}} \\
0.5 \leq \frac{H_{\text{HX}}}{L_{\text{HX}}} \leq 2.0
\end{align*}
\]

Key Findings:
- Middle R32 design: 45%↓ \(V_{\text{HX}}\); 37%↓ \(\Delta P_{\text{air}}\); 24%↓ FA; 0%↓ \(V_{\text{mat}}\); 38%↓ \(V_{\text{int}}\); 51%↓ \(M_{\text{ref}}\)
- Middle R454B design: 41%↓ \(V_{\text{HX}}\); 49%↓ \(\Delta P_{\text{air}}\); 17%↓ FA; 6%↑ \(V_{\text{mat}}\); 33%↓ \(V_{\text{int}}\); 44%↓ \(M_{\text{ref}}\)

Project Details: Internal Project.

R410A / R32 / R454B Condenser Design Insights

- The optimizer tends towards very similar airside tube layouts regardless of refrigerant choice
 - All HXs have similar tube pitches and number of tube banks
 - All R410A & R454B designs have 4 tube banks
 - Most R32 HXs have 5 tube banks (remainder have 4)
 - Fixed inlet air state & similar airside tube layout results in similar airside performance
 - Best airside performance is independent of refrigerant choice

- On average, the R32 HXs had the fewest tubes per bank
 - Likely results from R32 HXs having more tube banks
 - Tubes essentially moved from the face area to the depth-wise direction
 - Fixed air volume flow rate & smaller face area results in higher inlet air velocity
 - Can lead to undesirable fan noise / tube aeroacoustics challenges

- Additional performance improvement may be achieved by considering the (strictly-converging) pass configuration as a design variable
Air-to-R290 Condenser

Background:
- Application: Nominal 2.4 kW air-to-R290 condenser
- Baseline HX\cite{8}: Tube-fin HX, 5.0 mm OD copper tubes
- Optimized Tube Shape: NTHX1\cite{9}
- Two fluid passes

\[
\begin{align*}
\text{min } & \Delta P_{\text{air}}; \text{min } V_{\text{HX}} \\
\text{s.t. } & \dot{Q}_{\text{BL}} \leq \dot{Q} \leq 1.1 \cdot \dot{Q}_{\text{BL}} \\
& \Delta P_{\text{air}} \leq 2.0 \cdot \Delta P_{\text{air,BL}} \\
& \Delta P_{\text{Ref}} \leq \Delta P_{\text{Ref,BL}} \\
& V_{\text{HX}} \leq 0.8 \cdot V_{\text{HX,BL}} \\
& FA \leq FA_{\text{BL}} \\
& 0.5 \leq \frac{H_{\text{HX}}}{L_{\text{HX}}} \leq 2.0
\end{align*}
\]

Key Findings:
- Max V_{HX} reduction: 69%↓ V_{HX}; 0%↓ ΔP_{air}; 14%↓ FA;
 30%↓ V_{mat}; 49%↓ V_{int}; 48%↓ M_{ref}
- Max ΔP_{air} reduction: 44%↓ V_{HX}; 43%↓ ΔP_{air}; 0%↓ FA;
 13%↓ V_{mat}; 37%↓ V_{int}; 38%↓ M_{ref}

Project Details: Internal Project.
Summary of Completed HX Optimization Studies

<table>
<thead>
<tr>
<th>Optimization Study</th>
<th>Application</th>
<th>Tube Shape</th>
<th>Best Case Improvement (Air ΔP)</th>
<th>Best Case Improvement (HX Core Volume)</th>
<th>Best Case Improvement (Face Area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R290 Condenser</td>
<td>Nominal 2.4 kW A/C system</td>
<td>NTHX1</td>
<td>43%↓</td>
<td>69%↓</td>
<td>14%↓</td>
</tr>
<tr>
<td>R410A Condenser (A)</td>
<td>Nominal 5.28 kW A/C system</td>
<td>NTHX1</td>
<td>74%↓</td>
<td>49%↓</td>
<td>39%↓</td>
</tr>
<tr>
<td>R410A Condenser (B)</td>
<td>Nominal 5.28 kW A/C system</td>
<td>Full shape opt.</td>
<td>79%↓</td>
<td>69%↓</td>
<td>24%↓</td>
</tr>
<tr>
<td>R410a Condenser (C)</td>
<td>Nominal 5.28 kW A/C system</td>
<td>NTHX1</td>
<td>62%↓</td>
<td>53%↓</td>
<td>34%↓</td>
</tr>
<tr>
<td>R32 Condenser</td>
<td>Nominal 5.28 kW A/C system</td>
<td>NTHX1</td>
<td>47%↓</td>
<td>57%↓</td>
<td>50%↓</td>
</tr>
<tr>
<td>R454B Condenser</td>
<td>Nominal 5.28 kW A/C system</td>
<td>NTHX1</td>
<td>63%↓</td>
<td>47%↓</td>
<td>34%↓</td>
</tr>
<tr>
<td>R410A Evaporator</td>
<td>Nominal 5.28 kW A/C system</td>
<td>NTHX1</td>
<td>82%</td>
<td>68%↓</td>
<td>15%↓</td>
</tr>
<tr>
<td>R410A Evaporator</td>
<td>Heat pump system</td>
<td>NTHX1</td>
<td>62%↓</td>
<td>N/A</td>
<td>40%↓</td>
</tr>
<tr>
<td>R410A Evaporator</td>
<td>Heat pump system</td>
<td>Full shape opt.</td>
<td>77%↓</td>
<td>N/A</td>
<td>37%↓</td>
</tr>
<tr>
<td>sCO₂ Gas Cooler (A)</td>
<td>FTHX Baseline</td>
<td>Full shape opt.</td>
<td>N/A</td>
<td>74%↓</td>
<td>7%↓</td>
</tr>
<tr>
<td>sCO₂ Gas Cooler (B)</td>
<td>MCHX Baseline</td>
<td>Full shape opt.</td>
<td>79%↓</td>
<td>85%↓</td>
<td>133%↑</td>
</tr>
</tbody>
</table>
Prototype C1 Experimental Validation[^15]

Dry Evaporator Conditions[^16]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid</td>
<td>R410A</td>
</tr>
<tr>
<td>MFR</td>
<td>5.0 – 9.5 g/s</td>
</tr>
<tr>
<td>Evaporation Temp.</td>
<td>10°C</td>
</tr>
<tr>
<td>Inlet Quality [-]</td>
<td>0.20</td>
</tr>
<tr>
<td>Superheat</td>
<td>> 8 K</td>
</tr>
<tr>
<td>Air Inlet Temp.</td>
<td>26.7°C</td>
</tr>
<tr>
<td>Air Inlet RH</td>
<td>10%</td>
</tr>
<tr>
<td>Air Inlet Velocity</td>
<td>1.0 – 2.5 m/s</td>
</tr>
<tr>
<td>Airside ΔP</td>
<td>6.3 – 24.6 Pa</td>
</tr>
<tr>
<td>Nominal Capacity</td>
<td>1250 – 2000 W</td>
</tr>
</tbody>
</table>

Wet Evaporator Conditions[^16]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFR</td>
<td>7.0 – 11.5 g/s</td>
</tr>
<tr>
<td>Evaporation Temp.</td>
<td>10°C</td>
</tr>
<tr>
<td>Inlet Quality [-]</td>
<td>0.20</td>
</tr>
<tr>
<td>Superheat</td>
<td>> 8 K</td>
</tr>
<tr>
<td>Air Inlet Temp.</td>
<td>26.7°C</td>
</tr>
<tr>
<td>Air Inlet RH</td>
<td>52%</td>
</tr>
<tr>
<td>Air Inlet Velocity</td>
<td>1.0 – 2.5 m/s</td>
</tr>
<tr>
<td>Airside ΔP</td>
<td>6.3 – 24.6 Pa</td>
</tr>
<tr>
<td>Nominal Capacity</td>
<td>1250 – 2000 W</td>
</tr>
<tr>
<td>Sensible Heat Ratio</td>
<td>0.70 – 0.76</td>
</tr>
</tbody>
</table>
Conclusion

• Developed an HX optimization framework featuring multi-scale & multi-physics analyses for the design of high performance, reduced charge air-to-refrigerant HXs with novel, non-round, shape-optimized tube shapes
 • Framework successfully exercised for radiator, condenser, evaporator, & gas cooler applications
 • New designs can be 20% smaller, 20% lighter, 15% more effective, & exhibit 25% reduction in internal volume compared to state-of-the-art baseline HXs

• Manufactured prototype tubes & HXs using conventional & additive techniques
 • Two (2) additively-manufactured prototype HXs (Material: Titanium)
 • Five (5) conventionally-manufactured prototype non-round tubes (Materials: Aluminum, Brass, & Copper)
 • Eight (8) conventionally-manufactured prototype HXs featuring (Al and Cu tubes)

• Conducted extensive experimental testing in a standardized wind-tunnel test facility to validate prototype performance and design framework efficacy
 • Independent validations at external labs
 • Modeled HX performance showed good agreement with prototype experimental performance
 • Tube blockages and wetting during dehumidification can have significant impact on HX performance
Thank you!

Questions / Feedback:
Vikrant C. Aute
vikrant@umd.edu
References

