Potential Benefits of Shape Optimized Air-to-Refrigerant Heat Exchangers for New Lower-GWP Refrigerants

Session: Heat Pumping Technologies for Residential, Commercial, and Industrial Applications
IEA HPT TCP: Annex 54 Heat Pump Systems with Low GWP Refrigerants

Vikrant C. Aute, PhD
vikrant@umd.edu
University of Maryland
Acknowledgements

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Building Technologies Office Award Number DE-EE0008221. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This work was also funded in part by the Modeling & Optimization Consortium at the University of Maryland.

• Next Gen HX Project Team (since 2005)
 • Team at University of Maryland
 • Industry Partners (OEMs, suppliers, AM expertise)
• Collaborators
 • Oak Ridge National Laboratory: Computational heat transfer
 • Heat Transfer Technologies: Novel mfg. process development
Contents

• Motivation
• Air-to-Refrigerant Heat Exchangers
 • Modeling
 • Design and Flow Path Optimization
• Multiscale Optimization Framework
• Application to R410A Alternatives: R32 and R454B
• Prototype Fabrication & Validation
• Conclusions
Motivation

- HVAC&R consumes 67% of US building energy and 14% of total US energy usage\(^1\)
 - AC, Heat Pumps, DHW, Refrigeration…
- IEA Estimate: 2B Air-conditioners today, 5B+ by 2050
- Equipment efficiency improvement is a key enabler for decarbonization of buildings
- Heat eXchangers (HX) are key components in thermal systems
 - Account for 20%+ losses
 - Generally 2 or more in each system
 - Cross-cutting technology across domains
- Improved HXs lead to:
 - Lower refrigerant charge, environmental impact
 - Size/weight reduction, lower costs
 - Lower energy consumption, emissions

\(^1\) Reference: [IEA Estimate]
Air-to-Refrigerant Heat Exchangers

- Tube-Fin (Dh: 4-12+ mm), Microchannels (Dh: 0.6-3mm)
- Extended Surfaces
 - Plain/enhanced fins
 - Bare tubes
- Refrigerant side
 - Fluid Classes: R410A, NH3, CO2, Water, HCs
 - Mass flux: 100 – 1500 kg/s.m²
 - HTC: 500-10,000+ W/m²K
- Air side
 - Face velocity: 0 – 5 m/s
 - HTC: 10 – 150+ W/m²K
- Air-side is the dominant resistance!
Goal: Next Generation Heat Exchangers

Performance Targets
• 20% Smaller, 20% Lighter, 20% more effective; 25% reduction in charge
• Manufacturable within 5 years, with “minimal” additional costs
Leverage advances in CFD, Machine Learning, etc.
Other Challenges

• Novelty
 • Novel designs must be at least 20% better with significant reductions in refrigerant charge
 • Lack of thermohydraulic characterization and reliable design tools
 • Design modularity

• Manufacturing aspects
 • Component availability
 • Joining / manufacturing techniques
 • Process scalability

• Operational aspects
 • Fouling, Wetting, and Frosting
 • Flow maldistribution
 • Noise and vibration, “abuse”

• Integration of Storage
• Costs / ROI / Markets & Regulations
HX Optimization Framework[1,4,5]

- **Concept Heat Exchanger**
- **Optimized HX**
- **Parameterize Geometry**
- **ML Models**
 - DOE
 - PPFSA
- **Reusable Models**
 - Optimizer
 - New Design
 - HX FV Modeling & Simulation
 - Air ΔP, Volume, Matl', Heat Load, Max Stress, ...

- **Current Technology**
- **Manufacturable Designs**
- **Best Designs**
- **HX Volume**
- **Air ΔP**

PPFSA = Parallel Parameterized Fluid & Structural Analysis; MOGA = Multi-Objective Genetic Algorithm; FV: Finite Volume

Contributors: Drs Aute, Abdelaziz, Saleh, Bacellar, Huang, Eldeeb

IEA Annex-54 Update at Chillventa 2022

Copyright© 2022 Center for Environmental Energy Engineering, University of Maryland
Path configuration and system level optimization can be conducted simultaneously or sequentially.
Framework Details

• Shape representation
 • NURBS
• Design of Experiments
 • All at once, sequential/adaptive
• PPFSA
 • Parallel Parameterized Fluids & Structural Analysis
 • Analyze geometries generated on the fly, with simultaneous shape & topology change
 • Automated GCI Analysis
• Machine Learning Methods
 • Kriging/NN/SVM; Typical MAS: 90%+
 • (Nested) MOGAs
 • HX Design Optimization
 • Custom codes for flow path optimization
• Systems/buildings analysis

MAS: Metamodel Acceptability Score, based on a random sample
MOGA: Multi-Objective Genetic Algorithms
GCI: Grid Convergence Index (ASME Standard VV 20)
Lower-GWP Nominal 5.28 kW Condenser Optimization

- **Optimization Problem Formulation**
 - Cross-flow HX with fixed inlet conditions\[^{30}\]
 - Fixed, non-round, conventionally-manufacturable NTHX1 tube shape\[^{6}\]
 - Baseline refrigerant: R410A
 - Lower-GWP alternatives: R32, R454B

\[
\begin{align*}
\text{min} \Delta P_{air}, V_{HX} \\
\text{s.t.} \quad \Delta P_{air} \leq 2.0 \cdot \Delta P_{air,BL} \quad V_{HX} \leq V_{HX,BL} \\
0.5 \leq \frac{H_{HX}}{L_{HX}} \leq 2.0 \quad A_f \leq A_{f,BL} \\
\Delta T_{SC,BL} -1.0 \leq \Delta T_{SC} \leq \Delta T_{SC,BL}
\end{align*}
\]

\[^{*}\text{Cu tube showed no deformation up to 20 MPa internal pressure}\[^{30}\]
\[^{**}\text{Al tube showed no deformation up to 7.5 MPa internal pressure}\[^{30}\]

<table>
<thead>
<tr>
<th>Variables</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube pitches (HS, VS)</td>
<td>Air inlet state (T, RH, (\dot{V}))</td>
</tr>
<tr>
<td># Tube Banks</td>
<td>Fluid inlet state (T, P, (\dot{m}))</td>
</tr>
<tr>
<td># Tubes per Bank</td>
<td>NTHX1 tube shape</td>
</tr>
<tr>
<td>Inlet Air Velocity</td>
<td>Two fluid passes (60% / 40%)</td>
</tr>
</tbody>
</table>
Optimal HX Design Comparison for each Refrigerant

HX-Level Performance Metrics

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Line Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>R410A (BL)</td>
<td>[baseline]</td>
</tr>
<tr>
<td>R410A (Opt)</td>
<td>[optimized]</td>
</tr>
<tr>
<td>R32</td>
<td>[R32]</td>
</tr>
<tr>
<td>R454B</td>
<td>[R454B]</td>
</tr>
</tbody>
</table>

HX Face Area Bounding Box

Baseline HX is square[^30]
Images to scale
Prototyping

1.5TR-E-11B: 1.5TR Nominal capacity evaporator with 11 rows
Conventional Materials: Copper, Aluminum; Additive Materials: Titanium, Plastics

NTHX-1, Ti (2016)

Additively Manufactured

Baffle Location Based on Flow Path Optimization

Tube Representative Cross Section

Conventionally Manufactured

~250 mm
1.5TR-3B-001 (2019)

~370 mm
~520 mm
~500 mm

ENTHX1, Ti (2019)

~780 mm

~210 mm
1.5TR-C-4B-002 (x2) (2021)

~500 mm
~470 mm

~480 mm
~780 mm
Experimental Validation

- Comprehensive validation across 11+ radiator, condenser, and evaporator prototypes\(^{[11-12]}\)
- Predictions within ±15% for capacity and pressure drop
- Successful independent lab validations
Prototype C1 Wet Evaporator Testing Water Bridging

Dry & Wet Conditions Airside Pressure Drop

- Wet Evap. Conditions
- Dry Evap Conditions

2.3x increase

Airside Pressure Drop [Pa]

Inlet Air Velocity [m/s]
Conclusions

• Advances in computational methods, computing hardware, and Machine Learning is transforming the way thermal systems are conceived, designed, optimized, and operated

• Systematic optimization required to optimize heat exchangers for different refrigerants and application – thus enabling the low-GWP transition

• Shape optimized flow channels have the potential to reduce size/weight of heat exchangers by 25%, and refrigerant charge by 30%

• (In general) Current modeling capabilities offer 15% accuracy – pretty good for novel designs

• Cost is still the primary consideration in introducing novel HX technologies to market
Progress Since Last Annex Update (Jun 2022)

• System level testing for performance validation
 • System donated by HVAC OEM Partner
 • Designed/optimized heat exchangers for system testing
 • Fabrication of heat exchangers in progress; lessons learned
 • Updated lab capabilities to instrument the test unit

• Modeling Updates
 • Final correlations for aero-acoustics/noise
 • Started comprehensive effort on modeling dehumidification characteristics for non-round shape-optimized tubes; promising initial results
 • Developing an automated tool to “generate” an equivalent optimal design for a given tube-fin or microchannel heat exchanger

3. ANSYS, Inc. (2018a) *Ansys® GAMBIT, Release 2.4.6, Fluent Release 19.3, Mechanical Release 18.0*

Questions?

Vikrant C. Aute
vikrant@umd.edu