Chillventa CONGRESS 2022
Heat Pumping Technologies
SOLSTICE® N71 (R-471A) AS A LONG-TERM REFRIGERANT FOR RETAIL SECTOR

WISSAM RACHED
EMEA TECHNICAL SALES MANAGER

PAWEL WISNIK
ADVANCED APPLICATION ENGINEER

October 17, 2022
ADDRESSING THE NEEDS OF SUPERMARKET OWNERS

How to address them?

- Safety at a sales area
- Reliability (no failures at high ambient)
- Eco-efficiency analyses (CAPEX, OPEX…)
- Flexibility (remodeling, space constraints…)
- Easy installation and service (skills and components available)
- Low GWP products (F-gas, tax, incentives)
Solstice® N71 is a long-term refrigerant for retail sector

- Honeywell Solstice® N71 (R-471A) is the only low GWP (<150), nonflammable refrigerant that answers needs of the retail sector in terms of performance, safety and Total Cost of Ownership (TCO).
 - Low pressure refrigerant → lower leak rates
 - Offers better efficiency in high ambient conditions
 - No charge size limitations for flammability (A1)
 - Standard service practices and traditional contractor base (vs. CO2)
 - Regulatory compliant with Fgas
 - Handling, storage, and transportation same as low pressure nonflammable refrigerants

<table>
<thead>
<tr>
<th>Property</th>
<th>R-471A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition (by weight)</td>
<td>R-1234ze / R-1336mzzE / R-227ea (78.7 / 17 / 4.3 %)</td>
</tr>
<tr>
<td>GWP</td>
<td>148</td>
</tr>
<tr>
<td>Safety class</td>
<td>ASHRAE A1</td>
</tr>
<tr>
<td>Critical temperature</td>
<td>112 °C</td>
</tr>
<tr>
<td>Glide at 1,013 bar</td>
<td>3.2 K</td>
</tr>
<tr>
<td>Boiling point</td>
<td>-16.9 °C</td>
</tr>
</tbody>
</table>

These are just some of a mosaic of properties that must be considered in selecting a refrigerant.
SOLSTICE® N71 (R-471A)
NEW BUILD

Heat recovery
Case study – Supermarket 1000 m²
CASE STUDY – LONDON UK, SUPERMARKET 1000 M²

Specification of the partitions

1. **Walls**: concrete δ=150 mm and PU δ=200 mm with λ = 0.018 W/m-K
2. **Ceiling**: compressed mineral wool δ=300 mm with λ = 0.03 W/m-K
3. **Floor**: concrete δ=150 mm and PU δ=150 mm with λ = 0.02 W/m-K
4. **Windows**: 10% of the total floor area, with k = 1.5 W/m²-K

Heat transfer model through partitions

- **Sandwich partition**
- **Simplified partition**

Details on modelling heating needs
CASE STUDY – LONDON UK, SUPERMARKET 1000 M²

Specification of the heat sources

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat through walls and ceiling can be either loss → or gain ←</td>
</tr>
<tr>
<td>2</td>
<td>Heat through floor is a loss →</td>
</tr>
<tr>
<td>3</td>
<td>Heat through windows can be either a loss → or gain ←</td>
</tr>
<tr>
<td>4</td>
<td>Make-up air for mechanical ventilation can be either a loss → or gain ←</td>
</tr>
<tr>
<td>5</td>
<td>Air infiltration (due to non airtight construction) is always a loss →</td>
</tr>
<tr>
<td>6</td>
<td>Heat absorbed by display cabinets and cold rooms is always a loss →</td>
</tr>
<tr>
<td>7</td>
<td>Heat from people (customers and store staff) is always a gain ←</td>
</tr>
<tr>
<td>8</td>
<td>Heat from lighting is a gain ←</td>
</tr>
</tbody>
</table>
| 9 | Convectors provides a gain ←
| | Convector supply water temp. is 35°C |

Details on modelling heating needs

- **Heat through walls and ceiling:** Can be either a loss or gain.
- **Heat through floor:** A loss.
- **Heat through windows:** Can be a loss or gain.
- **Make-up air for mechanical ventilation:** Can be a loss or gain.
- **Air infiltration:** Always a loss.
- **Heat absorbed by display cabinets or cold rooms:** Always a loss.
- **Heat from people (customers and store staff):** Always a gain.
- **Heat from lighting:** A gain.
- **Convectors:** A gain. (Supply water temp. is 35°C).
ARCHITECTURE FOR FOOD RETAIL

Medium Temperature Solstice® N71 (R-471A)
- Centralized Rack System
- Traditional rack or distributed system (well-know technologies)
- Uses a non-flammable refrigerant of GWP<150 throughout the sales area
- Expect similar performance to typical R-134A Medium Temp systems

Low Temperature Solstice® L40X (R-455A)
- Condensing units with Solstice® L40X (R-455A)
- Possible use of Solstice® N40 (R-448A) for systems < 40 kW
CASE STUDY – REFRIGERATION SYSTEM

MT system
- refrigerant R-471A
- installed cooling capacity 100 kW
- simultaneous factor for actual load on refrigeration system:
 \[x_{\text{day}} = 95\%, \quad x_{\text{night}} = 70\% \]
- evaporating temperature -7°C
- condensing temperature: bin temperature + 8K, but not less than 15 °C
- superheat at compressor suction 10K

LT system
- refrigerant R-455A
- installed cooling capacity 14 kW
- simultaneous factor for actual load on refrigeration system:
 \[x_{\text{day}} = 95\%, \quad x_{\text{night}} = 70\% \]
- evaporating temperature -32°C
- condensing temperature: bin temperature + 8K, but not less than 15 °C
- superheat at compressor suction 10K

Systems schematics
1000 M² SUPERMARKET – R471A / R455A SYSTEM

• **Supermarket data**
 – Installed cooling capacity: 100 kW MT & 14 kW LT
 – Heating needs: 209 818 kWh / water network 35/30°C
 – Hot water needs: 119 866 kWh / inlet water 5°C / outlet 60°C

• **Heat recovery scenario**
 – Cover hot water need first
 – Remaining available heat is used for heating
 – Gas boiler is used to cover the remaining needs
1000 M² SUPERMARKET – R471A / R455A SYSTEM

- Heat recovery potential
 - Refrigeration system produce 100% hot water coverage (119 866 kWh)
 - Refrigeration system cover around 20% of the heating needs (41 000 kWh)
 - Total saving: **161 000 kWh/year** (Gas saving if gas boiler is used instead of heat recovery)

Honeywell Simulation based on previously mentioned assumptions

48% is the reduction in gas consumptions for both heating and hot water
SOLSTICE® N71 (R-471A)

REMODELING

Deep subcooling concept
Remodeling existing store is a challenge

RETAIL SECTOR | EXISTING ASSETS

- Open display cases
- Low evaporating temperature (open display cases)
- Most of Existing stores
- Compressor rack designed for open display cases
- Copper tube network for liquid and suction lines (designed for open display cases)
- High remodeling cost
- High pressure and high leakage rate

Remodeling Goals

- Keep High quality customer experience
- Long Term solution (comply with the F-gas)
- Reduce electricity bill (increase efficiency, heat recovery)
- Lowest remodeling cost (low CAPEX)
SOLSTICE® N71 (R-471A) : REMODELING MT

Properties at -8/45°C

<table>
<thead>
<tr>
<th></th>
<th>R404A</th>
<th>R471A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (bar)</td>
<td>4.7</td>
<td>1.5</td>
</tr>
<tr>
<td>Suction density (kg/m³)</td>
<td>23.24</td>
<td>8.5</td>
</tr>
<tr>
<td>Enthalpy delta (kJ/kg)</td>
<td>102</td>
<td>117</td>
</tr>
<tr>
<td>Volumetric capacity (kJ/m³)</td>
<td>2370</td>
<td>994</td>
</tr>
</tbody>
</table>

- Existing R-404A systems cannot be drop-in with R-471A.
- Design and architecture changes will be required when remodeling an existing R-404A system.
DEDICATED MECHANICAL SUBCOOLING SYSTEM (DMSS)

DMSS features:

- DMSS sub cools liquid in the outlet of the liquid receiver of the main system
- DMSS increases cooling capacity of the main system without increasing the mass flow

DMSS boosts system capacity
BENEFIT OF A DMSS ON A SYSTEM CAPACITY

- Deep subcooling increases initial cooling capacity up to 64%.

Properties at -8/45°C

<table>
<thead>
<tr>
<th></th>
<th>R404A</th>
<th>R471A</th>
<th>R471A w/ DMSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (bar)</td>
<td>4.7</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Suction density (kg/m³)</td>
<td>23.24</td>
<td>8.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Enthalpy delta (kJ/kg)</td>
<td>102</td>
<td>117</td>
<td>179</td>
</tr>
<tr>
<td>Volumetric capacity (kJ/m³)</td>
<td>2370</td>
<td>994</td>
<td>1521</td>
</tr>
</tbody>
</table>

Increase in a volumetric capacity is proportional to subcooling amount.
DMSS can boost overall system COP

- Subcooling drives performances of a system function of the cooling demand.
- There is an optimum subcooling to get maximum COP.
- COP increase as much as +10 … +30%
DMSS | CONCLUSIONS AND PERSPECTIVES

<table>
<thead>
<tr>
<th>Existing MT system</th>
<th>Remodeling with N71</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>– R-404A or R-404A-like refrigerant</td>
<td>– install DMSS for capacity increase</td>
<td>– system complaint with the F-gas as a long-term solution</td>
</tr>
<tr>
<td>– -10 to -8°C design evaporating temperature</td>
<td>– use existing compressors rack</td>
<td>– R471A offers elevated efficiency versus existing system</td>
</tr>
<tr>
<td>– Open display cabinets</td>
<td>– install doors on display cabinets (Reduced load, higher evaporating temperature leading to energy savings)</td>
<td>– remodeling cost is 50%* of the cost of a brand-new system.</td>
</tr>
<tr>
<td>– Copper pipe network</td>
<td>– use all the installed copper pipes (-40%* capex)</td>
<td>– Additional opportunity for heat recovery</td>
</tr>
</tbody>
</table>

*Conducted for specific store in north of France, 180 kW cooling MT refrigeration system

Solstice® N71 is the best option for remodeling existing systems
SOLSTICE® N71 (R-471A)

REMODELING

Heat recovery
DMSS for hot water production
DMSS FOR A HOT WATER PRODUCTION

- DMSS increase the cooling capacity, COP and produces hot water

- Example:
 - model based on Bitzer reciprocating compressor for the main system and Copeland scroll compressor for the DMSS system
 - running conditions: -10/44°C, 100kW cooling capacity, water inlet/outlet: 15°C / 60°C

DMSS produces hot water with higher COP than the main system
DMSS acts as a heat pump elevating waste, low grade heat

DMSS FOR A HOT WATER PRODUCTION

- More than 50% cooling capacity increase is achieved using subcooling system
- COP stay higher versus R-404A reference system and achieves 20% increase at 20°C subcooling
- Up to 30kW of free hot water production

Honeywell simulation based on previously mentioned assumptions
THANK YOU

DISCLAIMER

Although Honeywell International Inc. believes that the information contained herein is accurate and reliable, it is presented without guarantee or responsibility of any kind and does not constitute any representation or warranty of Honeywell International Inc., either expressed or implied. A number of factors may affect the performance of any products used in conjunction with user’s materials, such as other raw materials, application, formulation, environmental factors and manufacturing conditions among others, all of which must be taken into account by the user in producing or using the products. The user should not assume that all necessary data for the proper evaluation of these products are contained herein. Information provided herein does not relieve the user from the responsibility of carrying out its own tests and experiments, and the user assumes all risks and liabilities (including, but not limited to, risks relating to results, patent infringement, regulatory compliance and health, safety and environment) related to the use of the products and/or information contained herein.
Chillventa CONGRESS 2022
Heat Pumping Technologies