Experimental evaluation of R410A, R407C and R134a alternative refrigerants in residential heat pumps

Pierre PARDO, and Michèle MONDOT

CETIAT, Centre Technique des Industries Aérauliques et Thermiques, HVAC systems department, Villeurbanne, France

pierre.pardo@cetiat.fr

26/04/2021
Content

• Context
• Objectives
• Experimental procedure
• Test results
 • Alternatives to R410A in a 10 kW air-to-water heat pump
 • Alternatives to R407C in a 3 kW water-to-air heat pump
 • Alternatives to R134a in a split heat pump water heater
• Conclusions
Context

• The European F-gas regulation causes a shift towards refrigerants with no Ozone Depletion Potential (ODP) and Low Global Warming Potential (GWP)

• What is the biggest challenge for the EU?

The HFC Phase-down

- 2021: - 55%
- 2024: - 69%
What are the most promising Low-GWP refrigerants to replace the HFC commonly used in heat pumps?
Objectives

To assess and to compare the heat pump performance when “drop-in” tests are carried out with:

5 Low-GWP alternatives to R410A in a 10 kW air-to-water reversible HP
- R32, HPR2A, R447A, R454B and R459A

3 Low-GWP alternatives to R134a in a split HPWH having a 200L water tank
- R513A, R450A and R1234yf

2 Low-GWP alternatives to R407C in a 3 kW water-to-air reversible HP
- R454C and R455A
Experimental procedure

• **Drop-in tests**
 • No changes were made to the heat pumps

• **Experimental procedure (3 steps)**
 • **Step 1**: Refrigerant charge optimization
 • **Step 2**: Thermal performance assessment with alternative refrigerants
 • **Step 3**: Performance verification with the initial refrigerant

=> **Step 2 : Thermal performance assessment**

• **Air-to-water and water-to-air heat pumps**: Tests in rating and operating limit conditions according to EN 14511 standard

• **Heat pump water heater**: Tests consisted in heating-up of the water in the tank followed by a hot water tapping. Measurements followed the EN 16147 standard recommendations
Tests of Low-GWP alternatives to R410A in a 10 kW air-to-water reversible HP

- Refrigerant properties

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Composition</th>
<th>Glide (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R410A</td>
<td>R32/R125 (50/50%w)</td>
<td>0.1</td>
</tr>
<tr>
<td>R32</td>
<td>R32 (100%w)</td>
<td>0</td>
</tr>
<tr>
<td>HPR2A</td>
<td>R32/R134a/R1234ze(E) (76/6/18%w)</td>
<td>4.1</td>
</tr>
<tr>
<td>R447A</td>
<td>R32/R1234ze(E)/R125 (68/28.5/3.5%w)</td>
<td>5.1</td>
</tr>
<tr>
<td>R454B</td>
<td>R32/R1234yf (68.9/31.1%w)</td>
<td>1.3</td>
</tr>
<tr>
<td>R459A</td>
<td>R32/R1234yf/R1234ze(E) (68/6/6%w)</td>
<td>1.9</td>
</tr>
</tbody>
</table>

- Test conditions*
 - **Cooling mode**: 2 rating and 2 operating limit conditions
 - **Heating mode**: 6 rating and 3 operating limit conditions

- **84 tests** have been carried out according to EN 14511

*For more details concerning the test conditions see the annex 54 report 2020
Tests of Low-GWP alternatives to R410A in a 10 kW air-to-water reversible HP

- **R447A**: Capacity: -17.7% to -1.0% and EER: -12.2% to +14.1%
- **HPR2A**: Capacity: -14.3% to +2.1% and EER: -11.3% to +12.7%
- **R459A**: Capacity: -9.3% to +2.7% and EER: -7.0% to +10.3%
- **R454B**: Capacity: -11.6% to +5.5% and EER: -4.1% to +12.1%
- **R32**: Capacity: -2.2% to +12.3% and EER: -6.4% to +7.8%

*R32 did not allow performing CL2 limit condition test – \(T_{\text{discharge}} > 115^\circ C \)
Tests of Low-GWP alternatives to R410A in a 10 kW air-to-water reversible HP

Heating capacity (ratio)

- **R447A:** Capacity: -30.8% to -2.4% and COP: -3.8% to +11.2%
- **HPR2A:** Capacity: -33.4% to +1.5% and COP: -5.8% to +8.1%
- **R459A:** Capacity: -8.9% to -0.9% and COP: +0.2% to +8.0%
- **R454B:** Capacity: -7.7% to +6.8% and COP: -3.5% to +12.7%
- **R32:** Capacity: -30.1% to +14.4% and COP: -12.7% to +13.9%

*R32 did not allow performing H3 rating condition & HL3 limit condition test – T_{discharge} > 115°C

- H1: Defrost periods occurred only for R32, HPR2A and R447A
Tests of Low-GWP alternatives to R407C in a 3 kW water-to-air reversible HP

• Refrigerant properties

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Composition</th>
<th>Glide (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R407C</td>
<td>R32/R125/R134a (23/25/52%w)</td>
<td>7.0</td>
</tr>
<tr>
<td>R454C</td>
<td>R1234yf/R32 (78.5/21.5%w)</td>
<td>8.5</td>
</tr>
<tr>
<td>R455A</td>
<td>R1234yf/R32/R744 (75.5/21.5/3%w)</td>
<td>12.8</td>
</tr>
</tbody>
</table>

• Test conditions*
 » Cooling mode: 2 rating and 2 operating limit conditions
 » Heating mode: 2 rating and 2 operating limit conditions

• 27 tests have been carried out according to EN 14511

*For more details concerning the test conditions see the annex 54 report 2020
Tests of Low-GWP alternatives to R407C in a 3 kW water-to-air reversible HP

- **R454C:**
 - Cooling capacity: -0.5% to +7.7%
 - EER: -10.7% to 0.0%

- **R455A:**
 - Cooling capacity: -5.4% to +11.2%
 - EER: -15.5% to -8.4%
Tests of Low-GWP alternatives to R407C in a 3 kW water-to-air reversible HP

- **R454C:**
 - Heating capacity: +1.2% to +3.6%
 - COP: -2.6% to 0.0%

- **R455A:**
 - Heating capacity: +6.1% to +8.6%
 - COP: -1.8% to +1.3%

Alternative discharge temperature [°C]

R407C discharge temperature [°C]
Tests of Low-GWP alternatives to R134a in a split HPWP having a 200 L water tank

- Refrigerant properties

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Composition</th>
<th>Glide (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R134a</td>
<td>R134a (100%w)</td>
<td>0</td>
</tr>
<tr>
<td>R513A</td>
<td>R1234yf/R134a (56/44%w)</td>
<td>0</td>
</tr>
<tr>
<td>R450A</td>
<td>R1234ze(E)/R134a (58/42 %w)</td>
<td>0.5</td>
</tr>
<tr>
<td>R1234yf</td>
<td>R1234yf (100%w)</td>
<td>0</td>
</tr>
</tbody>
</table>

- Test conditions*
 - 3 outdoor air temperatures: 2(1)°C, 7(6)°C, 35°C (dry(bulb))
 - **Phase 1**: Heating-up of the tank from 10°C to 60°C
 - **Phase 2**: Water tapping of 10 l/min (HP => off)

- **16 tests** have been carried out, measurements followed the EN 16147 standard recommendations

*For more details concerning the test conditions see the annex 54 report 2020
Tests of Low-GWP alternatives to R134a in a split HPWP having a 200 L water tank

- **R513A**:
 - Heating-up: -55 min to 0 min
 - COP: -2.0% to +3.3%

- **R1234yf**:
 - Heating-up: -46 min to +14 min
 - COP: -0.6% to +5.9%

- **R450A**:
 - Heating-up: +12 min to +94 min
 - COP: -5.2% to +1.8%
Conclusions

10 Low-GWP alternatives were evaluated with not less than 130 tests.

What are the most promising Low-GWP refrigerants to replace in “drop-in” the HFC commonly used in heat pumps?

![Diagram showing the comparison of different refrigerants based on GWP values.]

- **R410A**
 - GWP = 2088 A1
 - Deal with the high discharge temperature

- **R407C**
 - GWP = 1650 A1

- **R134a**
 - GWP = 1430 A1

- **R454B**
 - GWP = 466 A2L

- **R459A**
 - GWP = 460 A2L

- **R32**
 - GWP = 675 A2L

- **R513A**
 - GWP ~ 631 A1

- **450A**
 - GWP ~ 604 A1

- **R454C**
 - GWP ~148 A2L

- **R455A**
 - GWP ~146 A2L

- **R1234yf**
 - GWP ~ 4 A2L

And after...

- R744 (A1), R290 (A3), R600a (A3), R1270 (A3), R717 (B2L) ??