(TRANSIENT) NOISE OF HEAT PUMPS

IEA HPT TCP – Annex 51 – Task 4 (and partially Task 3) Acoustic Signatures of heat pumps

Thomas Gindre, <u>Thore Oltersdorf</u> (ISE), Sebastian Wagner, Jens Rohlfing (IBP)

Annex 51 Webinar 30.11.2020

Link of the reports:

https://heatpumpingtechnologies.org/annex51

Interdependency of air and structure-borne noise

Heat Pump

Acoustic contributions from hydronic circuits not shown here.

Source: Developed by Fraunhofer IBP

Noise of components and noise control – Task 3 activities

Acoustic contributions from hydronic circuits not shown here.

Source: Developed by Fraunhofer IBP

Transient noise effects in operated HPs – Task 4 activities

Heat Pump

Acoustic contributions like DHW tapping not shown here.

Source: Developed by Fraunhofer IBP

4

Transient noise effects in operated HPs – Task 4 activities

			Acoustic	
Dynamic processes	Time scale	Frequency	impact	Involved excitators
	[h]	[day ⁻¹]	[Large/Small]	
				evaporator, fan,
Frost growth	0.5 < x < 8	1-7	Large	compressor
Defrosting	< 0.2	1-7	Large	compressor, 4-way valve
Superheat control	< 0.01	Permanent	Small	eev
Compressor frequency				
modulation	0.2 < x < 0.01	Permanent	Large	compressor
Hydronic pumps	> 0.1	Permanent	Small	hydronic pump
Hydronic valves	> 0.1	Permanent	Small	hydronic valves
Air flow / Fan frequency	0.1 < x < 0.01	Permanent	Large	fan

- nature and intensity of emitted noises strongly depend on the operating conditions → see preliminary presentation + task 2 + task 4 report
- Most prominent: emissions during frosting/defrosting
 - switching to reverse flow counts for hissing noises
 - frost growth

Frosting / Defrosting

Source: AIT

Acoustics in Heat Pumps – Unclarified issues:

What is the share of noise types by a compressor?

Heat Pump

Source: Developed by Fraunhofer IBP

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Thore Oltersdorf

www.ise.fraunhofer.de

thore.oltersdorf@ise.fraunhofer.de

Please find all reports here: https://heatpumpingtechnologies.org/annex51

