Summary of the project

The Wien Energie GmbH operates the largest district heating network of Austria with a pipe length of about 1,200 km and about 350,000 connected households. Furthermore, the Wien Energie GmbH offers large customer solutions for the cooling of buildings.

For cooling purpose two concepts are available. The first one is called “decentralized”, within this concept the Wien Energie GmbH installs a refrigeration center at the customer site to supply cooling energy. The second one is called “centralized”, within this concept the Wien Energie GmbH installs a refrigeration center and supplies a certain number of customers with cooling energy through a district cooling network. The flow temperature in a district cooling network is about 6 °C.

"UTILIZATION OF WASTE HEAT OF A CHILLER FOR BUILDING AIR CONDITIONING VIA A HEAT PUMP FOR HEAT SUPPLY INTO A DISTRICT HEATING NETWORK"

Within both concepts absorption and compression chillers are used which require cooling devices for heat rejection such as cooling towers or river water. Basically, absorption chiller demand higher investment cost but they may increase the heat demand in district heating networks during the summer months compared to compression heat pumps which only need a connection to the electricity network as source for driving energy. An advantage of absorption chil-
In the year 2017 the Wien Energie GmbH decided to realize an innovative project in which waste heat of a chiller is used as heat source for a heat pump which supplies heat into the supply pipe of the district heating network.

For this a 2-stage compression heat pump is used to supply chilled water at a temperature of about 7 °C to the customer for air conditioning and heat to the district heating network at a temperature of up to 90 °C. The heat pump will be in operation only during the summer months, at this time the return temperature of the district heating network varies between 58 °C and 65 °C.

Expected results

- The idea of this project is to supply heat into the district heating network instead of heat rejection with cooling devices. This offers high potential for further applications especially within city centers.
- The installation of chillers without cooling towers is an advantage with regard to rooftop gardens, reduction of sound emissions, microclimate and cityscape.
- Due to the heat supply of the heat pump into the supply pipe of the district heating network savings of about 78 tons CO2 per year are expected.

Contact information

DI Burkhart Hölzl, Wien Energie GmbH
☎ +43 1 4004 89952
✉ burkhard.hoelzl@wienenergie.at

File compiled by Arnitz, A., Rieberer, R., Institute of Thermal Engineering, Graz University of Technology, 14.11.2018