Hardware-in-the-Loop test bench setup and its application to determine seasonal performance of heat pump systems

Markus Nürenberg
motivation, methodology

Static evaluations
- Predetermined test procedure
- Focus only on component
- No coverage of dynamic effects, responses and system synergies

Dynamic evaluation + wider system boundary
- Evaluate whole HP-systems
- Demand driven test procedure
- Dynamic responses are taken into account

HiL + test day reduction
- HiL test bench
- Building as simulation model
- Demand profiles
- Method to reduce test days
Hardware-in-the-Loop

home energy system

heat pump

system controller

hardware

software
Project Goals

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rooms</td>
<td>10</td>
</tr>
<tr>
<td>Net ground area</td>
<td>172 m²</td>
</tr>
<tr>
<td>Window surface</td>
<td>24 m²</td>
</tr>
<tr>
<td>Insulation standard</td>
<td>HIO 84</td>
</tr>
<tr>
<td>Standard heat load</td>
<td>7.7 kW</td>
</tr>
</tbody>
</table>

Building as Simulation Model (suitable for HP and CHP systems)
project goals

building as simulation model (suitable for HP and CHP systems)

demand profiles

- DHW
- EN 16147 profile ‘L’
- ventilation, set temperatures and internal gains
 - stochastic profile coupled with presence profile
- weather TRY
project goals

- clustering approach with optimization to determine cluster centers
- quotient of the sum of the weighted daily consumption and generation, respectively
- key features
 - realistic daily gradients
 - no limitation towards time span or weather data
 - sensitivity analysis necessary

building as simulation model (suitable for HP and CHP systems)

demand profiles

method to reduce test days
project goals

- building as simulation model (suitable for HP and CHP systems)
- demand profiles
- method to reduce test days
- HiL test bench

- climate chamber for outdoor units
- hydraulic test bench
 - sink for space heating
 - sink for DHW
 - source for ground water and brine HP
- coupling of PLC and simulation
- data handling
test bench: climate chamber I

1. fan
2. heat exchanger
 (low temp. chiller)
3. heat exchanger
 (district heating)
4. electrical heater
5. humidifier
6. swirl diffusors
7. temperature and
 humidity sensors

controlled test area
test bench: dynamic of the climate chamber

![Graph showing the dynamic of the climate chamber with relative humidity and temperature over time.](image-url)
test bench: hydraulic (heat sink and heat source)

8 hydraulic circuits
each works as heat sink or source
supplied by district heating and cooling
high precision measuring components
test object: water/water heat pump

home energy system

heat pump

system controller

city inlet
results of water/water hp test series

\[
\text{DPF} = 3.3
\]

Dynamic Performance Factor

<table>
<thead>
<tr>
<th></th>
<th>Qth</th>
<th>Wel</th>
<th>Qth</th>
<th>Wel</th>
<th>Qth</th>
<th>Wel</th>
<th>Qth</th>
<th>Wel</th>
<th>Qth</th>
<th>Wel</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>30.08</td>
<td></td>
<td></td>
<td>11.1</td>
<td></td>
<td>27.2</td>
<td></td>
<td>01.06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[0.36, 0.87, 0.97, 1.06, 1.08, 1.07, 1.61, 1.84\] kWh

experiment 1

experiment 2

experiment 3

delta min/max
results and outlook

test method for dynamic evaluation

various HiL interfaces

promising results for Round Robin Test

multi purpose development platform
Thank you for your attention!

Contact

E.ON Energy Research Center
Mathieustraße 10
52074 Aachen
Germany

Markus Nürenberg, M.Sc.
T +49 241 80 49784
F +49 241 80 49769
mnuerenberg@eonerc.rwth-aachen.de

Further information:
http://www.eonerc.rwth-aachen.de

Supported by:

Föderal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Promotional reference: 03ET1211B