High temperature heat pumps using zeotropic working fluids

Demonstration of Integration in a Spray Drying Facility

Benjamin Zühlsdorf, Fabian Bühler, Roberta Mancini, Stefano Cignitti, Brian Elmegaard

Section of Thermal Energy
Bld. 358, room 143
Email: bezuhls@mek.dtu.dk
Tlf.: +45 452 54103

DTU Mechanical Engineering
Department of Mechanical Engineering
Waste Heat Potential in Industry

Food Industry:
- Food Industry has the highest potential of excess heat
- Large temperature bandwidth
- 33 % of total fuel consumption for drying
- 42 % of total excess heat from drying

Drying Processes:
- Share on total fuel consumption of drying processes in other industries:
 - 19 % on average in industries
 - 26 % in wood and paper
 - 10 % in building material
Drying Processes in Food Industry

<table>
<thead>
<tr>
<th>Drying Technology</th>
<th>Industry</th>
<th>T_{in} [°C]</th>
<th>T_{out} [°C]</th>
<th>Share [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray Dryer</td>
<td>Milk/ Coffee/ Starch</td>
<td>200 - 270</td>
<td>60 - 110</td>
<td>25</td>
</tr>
<tr>
<td>Drum Dryer/ Kiln Dryer/ Rotary Dryer</td>
<td>Sugar¹</td>
<td>500</td>
<td>120</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Fruits/ Vegetables</td>
<td>65 – 105</td>
<td>20 – 40</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Fishmeal</td>
<td>500 – 600</td>
<td>80 – 120</td>
<td>9</td>
</tr>
<tr>
<td>Direct Contact Dryer (steam)</td>
<td>Bone meal</td>
<td>180</td>
<td>133</td>
<td>16</td>
</tr>
<tr>
<td>Fluidized Bed- / Fixed Bed- / Conveyer-/ Tray Dryer</td>
<td>Milk/ Coffee/ Starch</td>
<td>60 – 90</td>
<td>40 – 70</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cereals/ Sugar</td>
<td>40 – 70</td>
<td>20 – 30</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Fruits/ Vegetables</td>
<td>40 – 60</td>
<td>20 – 30</td>
<td>3</td>
</tr>
</tbody>
</table>

¹ In Denmark largely covered by superheated steam dryers
Case Study: Waste Heat Recovery from Spray Dryer (Arla)

<table>
<thead>
<tr>
<th>Flow</th>
<th>Temperature [°C]</th>
<th>Mass Flow [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying Air</td>
<td>1 15</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>2 70</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>4 210</td>
<td>43.7</td>
</tr>
<tr>
<td>Excess Air</td>
<td>5 70</td>
<td>61.5</td>
</tr>
</tbody>
</table>

High temperature HP using zeotropic working fluids: 18. Mai 2017
Integration in Spray Drying Facility
Case Study: Waste Heat Recovery from Spray Dryer (Arla)

High temperature HP using zeotropic working fluids:
Integration in Spray Drying Facility

<table>
<thead>
<tr>
<th></th>
<th>T [°C]</th>
<th>m [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drying Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>43.7</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>43.7</td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td>43.7</td>
</tr>
<tr>
<td>4</td>
<td>210</td>
<td>43.7</td>
</tr>
<tr>
<td>Excess Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>61.5</td>
</tr>
<tr>
<td>6</td>
<td>≈45</td>
<td>61.5</td>
</tr>
<tr>
<td>Secondary Cycle Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>14.8</td>
</tr>
<tr>
<td>8</td>
<td>≈40</td>
<td>14.8</td>
</tr>
<tr>
<td>Secondary Cycle Sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>75</td>
<td>10.6</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>10.6</td>
</tr>
</tbody>
</table>
Heat Pump Model

\[\dot{m}_{\text{sink}} = 10.61 \text{ kg/s} \]
\[T_{\text{sink,in}} = 75 \, ^\circ\text{C} \]
\[T_{\text{sink,out}} = 125 \, ^\circ\text{C} \]

\[\dot{m}_{\text{source}} = 14.81 \text{ kg/s} \]
\[T_{\text{source,in}} = 65 \, ^\circ\text{C} \]
\[T_{\text{source,out}} \approx 40 \, ^\circ\text{C} \]

\[\dot{Q}_{\text{sink}} \]
\[\dot{Q}_{\text{source}} \]
\[W_{\text{comp}} \]

Butane:
\[\text{COP} = 2.92 \]
\[p_{\text{evap}} = 2.9 \text{ bar} \]
\[p_{\text{cond}} = 27.4 \text{ bar} \]
Heat Pump Model

\[\dot{m}_{\text{sink}} = 10.61 \text{ kg/s} \]
\[T_{\text{sink,in}} = 75 ^\circ \text{C} \]
\[T_{\text{sink,out}} = 125 ^\circ \text{C} \]

\[\dot{m}_{\text{source}} = 14.81 \text{ kg/s} \]
\[T_{\text{source,in}} = 65 ^\circ \text{C} \]
\[T_{\text{source,out}} \approx 40 ^\circ \text{C} \]

Butane:
- \(\text{COP} = 2.92 \)
- \(p_{\text{evap}} = 2.9 \text{ bar} \)
- \(p_{\text{cond}} = 27.4 \text{ bar} \)
- \(y_{D,\text{source}} = 22 \% \)
- \(y_{D,\text{sink}} = 23 \% \)
Heat Pump Model

\[\dot{m}_{\text{sink}} = 10.61 \text{ kg/s} \]
\[T_{\text{sink,in}} = 75 \degree C \]
\[T_{\text{sink,out}} = 125 \degree C \]

Butane:
\[\text{COP} = 2.92 \]
\[p_{\text{evap}} = 2.9 \text{ bar} \]
\[p_{\text{cond}} = 27.4 \text{ bar} \]
\[\gamma_{D,\text{source}} = 22 \% \]
\[\gamma_{D,\text{sink}} = 23 \% \]
\[\gamma_{D,\text{source,Fluid}} = 12 \% \]
\[\gamma_{D,\text{sink,Fluid}} = 13 \% \]

\[\dot{Q}_{\text{sink}} \]
\[\dot{Q}_{\text{source}} \]
\[W_{\text{comp}} \]
Heat Pump Model

40 % DME – 60 % Pentane:
COP = 3.26

Butane:
COP = 2.92
p_{evap} = 2.9 \text{ bar}
p_{cond} = 27.4 \text{ bar}
\gamma_{D,source} = 22 \%
\gamma_{D,sink} = 23 \%
\gamma_{D,source,Fluid} = 12 \%
\gamma_{D,sink,Fluid} = 13 \%

Find suitable mixture
List of considered Fluids

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of Fluid</th>
<th>Ref. No.:</th>
<th>Type</th>
<th>ODP</th>
<th>GWP</th>
<th>Normal Boiling Point, °C</th>
<th>Crit. Temp. °C</th>
<th>Crit. Pressure bar</th>
<th>Safety Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methane</td>
<td>R-50</td>
<td>HC</td>
<td>0</td>
<td>25</td>
<td>-161.5</td>
<td>-82.6</td>
<td>46.0</td>
<td>A3</td>
</tr>
<tr>
<td>2</td>
<td>Ethylene</td>
<td>R-1250</td>
<td>HC</td>
<td>0</td>
<td>6.8</td>
<td>-103.8</td>
<td>9.2</td>
<td>50.4</td>
<td>A3</td>
</tr>
<tr>
<td>3</td>
<td>Ethane</td>
<td>R-170</td>
<td>HC</td>
<td>0</td>
<td>2.9</td>
<td>-88.6</td>
<td>32.2</td>
<td>48.7</td>
<td>A3</td>
</tr>
<tr>
<td>4</td>
<td>CO₂</td>
<td>R-744</td>
<td>HC</td>
<td>0</td>
<td>1.0</td>
<td>-</td>
<td>31.0</td>
<td>73.8</td>
<td>A1</td>
</tr>
<tr>
<td>5</td>
<td>Propylene</td>
<td>R-1270</td>
<td>HC</td>
<td>0</td>
<td>3.1</td>
<td>-47.6</td>
<td>91.1</td>
<td>46.7</td>
<td>A3</td>
</tr>
<tr>
<td>6</td>
<td>Propane</td>
<td>R-290</td>
<td>HC</td>
<td>0</td>
<td>3.0</td>
<td>-42.0</td>
<td>96.7</td>
<td>42.5</td>
<td>A3</td>
</tr>
<tr>
<td>7</td>
<td>Dimethyl ether (DME)</td>
<td>R-E170</td>
<td>HC</td>
<td>0</td>
<td>1.0</td>
<td>-24.0</td>
<td>127.3</td>
<td>53.4</td>
<td>A3</td>
</tr>
<tr>
<td>8</td>
<td>Iso-Butane</td>
<td>R-600a</td>
<td>HC</td>
<td>0</td>
<td>3.0</td>
<td>-11.7</td>
<td>134.7</td>
<td>36.3</td>
<td>A3</td>
</tr>
<tr>
<td>9</td>
<td>n-Butane</td>
<td>R-600</td>
<td>HC</td>
<td>0</td>
<td>3.0</td>
<td>-0.5</td>
<td>152.0</td>
<td>38.0</td>
<td>A3</td>
</tr>
<tr>
<td>10</td>
<td>Iso-Pentane</td>
<td>R-601a</td>
<td>HC</td>
<td>0</td>
<td>4.0</td>
<td>27.8</td>
<td>187.3</td>
<td>33.8</td>
<td>A3</td>
</tr>
<tr>
<td>11</td>
<td>Ethyl ether (DEE)</td>
<td>R-610</td>
<td>HC</td>
<td>0</td>
<td>4.0</td>
<td>34.6</td>
<td>193.7</td>
<td>36.4</td>
<td>A3</td>
</tr>
<tr>
<td>12</td>
<td>Pentane</td>
<td>R-601</td>
<td>HC</td>
<td>0</td>
<td>4.0</td>
<td>36.1</td>
<td>196.6</td>
<td>33.7</td>
<td>A3</td>
</tr>
<tr>
<td>13</td>
<td>n-Hexane</td>
<td>HC</td>
<td></td>
<td></td>
<td>68.7</td>
<td>234.5</td>
<td>30.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Heptane</td>
<td>HC</td>
<td></td>
<td></td>
<td>98.4</td>
<td>267.0</td>
<td>27.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results - COP

DME/i-Pentane Propane/i-Pentane DME/Pentane

Butane/Hexane DME/DEE

Butane DME DEE

COP

Composition of Component 2, kg/kg

Propylene/Isopentane
Propane/Isobutane
Propane/Butane
Propane/i-Pentane
DME/Isobutane
DME/i-Pentane
DME/Pentane
DME/DEE
DME/Hexane
Isobutane/Pentane
Butane/Pentane
Butane/Hexane

9 %
Results - NPV

Butane/Hexane
DME/i-Pentane
Propane/i-Pentane
DME/Pentane
Propylene/i-Pentane

DME
Butane

NPV, Mio. €:

Composition of Component 2, kg/kg
Results

<table>
<thead>
<tr>
<th>Component 1</th>
<th>Component 2</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>COP</th>
<th>(P_{\text{evap}}) (bar)</th>
<th>(P_{\text{cond}}) (bar)</th>
<th>(\frac{P_{\text{cond}}}{P_{\text{evap}}})</th>
<th>(T_{\text{comp, out}}) (°C)</th>
<th>NPV (10^3 €)</th>
<th>PBT (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME</td>
<td>Pentane</td>
<td>0.4</td>
<td>0.6</td>
<td>3.26</td>
<td>2.63</td>
<td>20.89</td>
<td>7.94</td>
<td>138.4</td>
<td>1,050.77</td>
<td>5.4</td>
</tr>
<tr>
<td>DME</td>
<td>Pentane</td>
<td>0.7</td>
<td>0.3</td>
<td>3.24</td>
<td>5.03</td>
<td>33.26</td>
<td>6.61</td>
<td>148.7</td>
<td>1,202.34</td>
<td>4.4</td>
</tr>
<tr>
<td>DME</td>
<td>DEE</td>
<td>0.5</td>
<td>0.5</td>
<td>3.24</td>
<td>3.67</td>
<td>27.61</td>
<td>7.52</td>
<td>143.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DME</td>
<td>i-Pentane</td>
<td>0.5</td>
<td>0.5</td>
<td>3.15</td>
<td>4.01</td>
<td>29.87</td>
<td>7.44</td>
<td>141.2</td>
<td>979.03</td>
<td>5.3</td>
</tr>
<tr>
<td>Propylen</td>
<td>i-Pentane</td>
<td>0.4</td>
<td>0.6</td>
<td>3.14</td>
<td>3.92</td>
<td>27.54</td>
<td>7.03</td>
<td>138.6</td>
<td>934.30</td>
<td>5.5</td>
</tr>
<tr>
<td>Propane</td>
<td>i-Pentane</td>
<td>0.5</td>
<td>0.5</td>
<td>3.08</td>
<td>4.90</td>
<td>32.84</td>
<td>6.70</td>
<td>139.3</td>
<td>850.75</td>
<td>5.8</td>
</tr>
<tr>
<td>DEE</td>
<td>i-Pentane</td>
<td>1.0</td>
<td>0.8</td>
<td>3.02</td>
<td>0.86</td>
<td>13.14</td>
<td>15.20</td>
<td>138.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DME</td>
<td>Butane</td>
<td>1.0</td>
<td>2.92</td>
<td>2.99</td>
<td>6.84</td>
<td>47.24</td>
<td>7.03</td>
<td>148.4</td>
<td>874.56</td>
<td>4.9</td>
</tr>
<tr>
<td>Butane</td>
<td></td>
<td>1.0</td>
<td></td>
<td>2.92</td>
<td>2.87</td>
<td>27.40</td>
<td>9.54</td>
<td>137.3</td>
<td>486.10</td>
<td>7.7</td>
</tr>
</tbody>
</table>
Best solution - COP

\[\text{COP} = 3.26, \quad \dot{Q}_{\text{sink}} = 2.23 \text{ MW} \]

\[\text{TCI} = 0.792 \text{ Mio. €}, \quad \text{NPV} = 1.05 \text{ Mio. €}, \quad \text{PBT} = 5.4 \text{ years} \]
Best solution - NPV

70 % DME – 30 % Pentane

COP = 3.24, \(\dot{Q}_{\text{sink}} = 2.23 \) MW

TCI = 0.642 Mio. €, NPV = 1.20 Mio. €, PBT = 4.4 years
Economics with Arla’s Boundary Conditions

Main Assumptions: Economic best case: 70 % DME – 30 % Pentane

Total investment: \(2 \times TCI_{hp}\)

Electricity: 0.074 €/kWh

Steam: 0.047 €/kWh

Subsidy: 0.051 €/kWh (first year)

Interest Rate: 10 %

Loan Duration: 5 years at 100 %

Results without Subsidy:

NPV: 5.29 Mio. €

Payback Time: 4 Years

Heating price: 0.042 €/kWh

Results with Subsidy:

NPV: 5.857 Mio. €

Payback Time: 3 Years

Heating price: 0.040 €/kWh
Conclusions

- **Possible application:** Simple Heat Pump with 70% DME – 30 % Pentane
 - Recovered waste heat: **1.53 MW** from exhaust air at 70 °C – 45 °C
 - Supplied heat: **2.23 MW** to heat air from 70 °C – 125 °C
 - Natural gas consumption: Decreased by ~**36 %** (2 Mio. m³/year)
 - Economically feasible:
 - **PBT = 4 – 5 years**, **NPV = 1.20 Mio. €**
 - **PBT = 3 years**, **NPV = 5.86 Mio. €** for complete investment considering subsidy in DK
 - Solution is technically feasible (according to manufacturer)
 - …but still needs to be validated in experimental setups

- **Heat pumps utilizing mixtures:**
 - Significant performance increase possible (**9 %**)
 - Requires a comprehensive screening
 - Considering mixtures can enhance the range of application for limited set of fluids
Thank you for your attention!

More about High Temperature Heat Pumps:
Workshop on 11.09.2017 in Copenhagen
http://www.conferencemanager.dk/HighTemperatureHeatPumps