Integration of Heat Pumps in Industrial Processes with Pinch Analysis

Prof. Dr. Beat Wellig
Lucerne University of Applied Sciences and Arts
CC Thermal Energy Systems & Process Engineering

12th IEA Heat Pump Conference 2017
Rotterdam, May 18th 2017
Outline

1. What is pinch analysis?
2. Integration of heat pumps with pinch analysis
3. Food industry case study
What is a «Pinch Analysis»?

- A different perspective on production plants and infrastructure
- A system orientated method for the determination of the optimal use of energy and plant design under the constraint of minimal cost (investment and operation)
- «Energy optimization based on a systematic approach instead of Trial-and-Error»
Principle of Pinch Analysis: Composite Curves (CCs)

- **Hot CC:** Cooling Requirements
- **Cold CC:** Heating Requirements

Select so that the total cost is minimum:

\[\Delta T_{\text{min}} \uparrow : \text{Investment costs} \downarrow \]
\[\Delta T_{\text{min}} \downarrow : \text{Investment costs} \uparrow \]

\[\Delta T_{\text{min}} \downarrow : \text{Operating costs} \uparrow \]
\[\Delta T_{\text{min}} \uparrow : \text{Operating costs} \downarrow \]
Special Characteristic of the Pinch Point

The pinch divides the entire system typically into two subsystems with

- **heat deficit** above the pinch and
- **heat surplus** below the pinch.

![Diagram showing pinch point with heat deficits and surpluses](image)
Heat deficit and surplus are shown in relation to temperature. Enables the optimization of the utility supply system ($H_{U_{opt}}$, $C_{U_{opt}}$).
The «3 Golden Rules» of Pinch Analysis

- No external cooling above the pinch
- No heat transfer over the pinch
- No external heating below the pinch
How does one integrate a heat pump?

A first option:

Heat pump operates below the pinch

«False» Integration:

The heat surplus is increased by the amount of compressor electrical power leading to a higher cooling requirement.

HU = Hot Utility
CU = Cold Utility
How does one integrate a heat pump?

A second option:

Heat pump operates above the pinch

«False» Integration:

The heat deficit is reduced by the amount of compressor electrical power. From an energetic perspective this type of integration is equivalent to electrical heating.

HU = Hot Utility
CU = Cold Utility
How does one integrate a heat pump?

A third option:

Heat pump operates over the pinch

«Correct» Integration:

The heat pump reduces both the cooling and the heating demands of the process and the associated operating costs.

HU = Hot Utility
CU = Cold Utility
How does one integrate a heat pump?

«Correct» Integration:

\[\dot{Q}_{HU} - (\dot{Q}_0 + P_{el}) \]

\[\dot{Q}_0 + P_{el} \]

\[\dot{Q}_0 \]

\[\dot{Q}_{CU} - \dot{Q}_0 \]

HU = Hot Utility
CU = Cold Utility
Food Industry Case Study

Energy optimization project in Swiss food company (2015):

- Production of sweet candies in the food industry
- Multi-product, semi-continuous processes
- Energy demand:
 - 5.1 GWh/y thermal
 - 3.6 GWh/y electrical
Food Industry Case Study

6 relevant «Operating Cases» during the production year: OC1 – OC6

<table>
<thead>
<tr>
<th>Operating Hours [h]</th>
<th>Vapor 0.5 bar</th>
<th>Exhaust Air</th>
<th>Vapor 1 bar</th>
<th>CIP Water</th>
<th>Waste Water</th>
<th>Drying Air</th>
<th>Warm Water</th>
<th>Hot Water 3 bar</th>
<th>Recooling Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6000</td>
<td>6000</td>
<td>1100</td>
<td>6000</td>
<td>6000</td>
<td>3000</td>
<td>3000</td>
<td>1100</td>
<td>1500</td>
</tr>
<tr>
<td>1500</td>
<td>6000</td>
<td>1500</td>
<td>550</td>
<td>6000</td>
<td>6000</td>
<td>1500</td>
<td>1500</td>
<td>550</td>
<td>1500</td>
</tr>
<tr>
<td>3000</td>
<td>4500</td>
<td>OC4</td>
<td>550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>6000</td>
<td></td>
<td>OC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td>OC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **cooling requirements, «hot streams»**
- **heating requirements, «cold streams»**

For example hot stream «Recooling Water»:
- Summer 700 kW
- Trans. period 200 kW
- Winter 120 kW
Food Industry Case Study
Integration of a Heat Pump: for example Transition Period, OC 4

Composite Curves

- HU demand: 140 kW
- HR potential: 196 kW

Grand Composite Curve

- Condenser HP: 130 kW
- Compressor: 30 kW
- Evap. HP: 100 kW

HP for OC4 (not the proposed HP):
- Evap.: 27°C, 100 kW
- Cond.: 73°C, 130 kW
- COP ≈ 4.3
- Refrigerant R134a

Heat pump «operates over the pinch» (correct integration)
Food Industry Case Study
Integration of a Heat Pump: for example Transition Period, OC 4

- Integration of heat pump increases the HR potential from 196 kW to 426 kW
- Reduction of the HU demand approx. 2.1 GWh/y (-40%)
- Reduction of the CU demand approx. 0.7 GWh/y (-29%)

HU demand: 10 kW (negligible)
HR potential: 426 kW
Food Industry Case Study

Heat Exchanger Network (HEN): for example Transition Period, OC 4

(HEN Design from PinCH 3.0)
Food Industry Case Study

Proposed HP: Heating Capacity 155 kW, Refrigerant R134a, COP = 4.4, on/off-controlled, 18.5 m³ Thermal Energy Storage (TES) available

<table>
<thead>
<tr>
<th>OC</th>
<th>Condenser Load [kW]</th>
<th>HU Savings [MWh/y]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC1</td>
<td>155</td>
<td>85</td>
</tr>
<tr>
<td>OC2</td>
<td>155</td>
<td>147</td>
</tr>
<tr>
<td>OC3</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>OC4</td>
<td>130</td>
<td>247</td>
</tr>
<tr>
<td>OC5</td>
<td>155</td>
<td>85</td>
</tr>
<tr>
<td>OC6</td>
<td>155</td>
<td>147</td>
</tr>
</tbody>
</table>

Economics of HR Measures and HP Integration:
- Cost Savings: 143’500 CHF/y
- Static Payback: 3.7 y
Conclusions

- «Correctly» integrated heat pumps operate over the pinch and reduce both the HU and CU demand
- A great number of case studies in Swiss industry show the potential of industrial heat pump application
- Over the last years, a dedicated engineering tool (PinCH 3.0) has been developed to support the application of the pinch method incl. HP integration
Acknowledgement

Financial Support:
- Swiss Federal Office of Energy SFOE
- Swiss Private Sector Energy Agency EnAW
- Lucerne University of Applied Sciences and Arts

Expert Team:
- Dr. Pierre Krummenacher, HEIG-VD
- Florian Brunner, Brunner Energieberatung GmbH

Thank you for your attention!