PERFORMANCE EVALUATION OF A HEAT PUMP WATER HEATER BY MEANS OF THERMODYNAMIC SIMULATION

K. R. DEUTZ, AXEL D’ANGELO, O. CAURET, R. RULLIÈRE, P. HABERSCHILL
18/05/2017
The external air Heat Pump Water Heater (HPWH): «An efficient and renewable individual sanitary hot water production system»

- **Thermal storage tank**: 200-300l
- **Auxiliary heater**: (1800-2000W)
- **Low capacity external air R134a heat pump**: (1800-2800W)
- **Normative COP**: < measured performances than expected by LCIE
- **HPWH Optimization**
- **Detailed performance analysis**
EXPERIMENTAL STUDY

- Water mass flow meter
- External air
- Ambient air
- Refrigerant mass flow meter
- Temperature probes
 - $T_{t,in}$
 - $T_{t,out}$
 - $T_{air,in}$
 - $T_{air,out}$
 - $T_{air,surf}$
 - $T_{e,in}$
 - $T_{e,ou}$
 - $T_{e,surf}$
 - $T_{HP,in}$
 - $T_{HP,ou}$

Dimensions:
- 60cm x 137cm
- 17cm
NUMERICAL MODELING
Using Modelica/Dymola language

Tank model

Heat pump model

Object based Heat Pump modeling (Dymola + TLK-TIL+ Builtsys), **neglecting**:
- Oil flow and accumulation
- Evaporator collectors and distributors
- Frost build-up
MODEL AND EXPERIMENTAL DATA COMPARISON

Mean error: 18 W (<5%)

Mean error: 0.12 K
Max error: 1.4 K

COP calculation phase

Mean error: 1.66 K
Max error: 4.8 K

Mean error: 2.9 K
Max error: 5.8 K

Experimental instabilities!

Mean error: 4 W (<1%)
Mean error: 18 W (<5%)

Tap Water Mass Flow Rate (l/h)

Exp. Electric Power (W)
Model Electric Power (W)
ANNUAL SIMULATIONS WITH VARIOUS CLIMATES

- Climatic impact influence shaded by other losses and phenomena: $2.00 < \text{COP} < 2.15$
 - Importance of standby heat losses: 19.6 % of total thermal energy produced
- COP Paris \approx COP Strasbourg \approx COP Karlsruhe
 - Auxiliary only used for low air temperatures and high water tank temperatures
 - Negligible impact of defrosting cycles

Improvement potentials:
- Storage efficiency ?
- Thermodynamic cycle ?
- Control ?
IMPROVING HPWH DESIGN

Storage efficiency on a normative COP

- **COP increase of 12%** with a void insulated (0.004W/(m.K)) tank

- **Ideal normative COP increase with perfect stratification:** + 3%
 - The mixing induced by the cold water jets affect stratification hence the condensing pressure
 - But need to perform annual study for better quantification
Thermodynamic cycle improvement
On single 10°C – 55°C heat ups
full factorial analysis

- low COP improvement potential: 4.2%
- Low water side convective heat transfer (200-300 W/m²K vs. 2500 W/m²K on refrigerant side)
- No interest from a techno-economic nor environmental stand point
IMPROVING HPWH CONTROL: HPWH SMART CONTROL ALGORITHM

- Rule based control strategy for load shifting
 - Providing fixed thermal capacity with the inverter based on historical daily consumption logs
 - Time of Use tariffs vs. Day periods prioritization based on day-1 forecast cost function

- Benefits hoped:
 - Lower tank temperature restart
 - Less unnecessary tank heat losses
 - Tariff/performance optimization
IMPROVING HPWH CONTROL: HPWH SMART CONTROL

- **Control strategy**
 - Control A: fixed speed hysteresis control
 - Control B: variable speed hysteresis control with fixed capacity PID
 - Control C: Variable speed + smart control

- **Impact on energy performance:**
 - Average COP C/A + 11%
 - Reduction of standby heat losses
 - Better start-up conditions: low tank temperature
 - No Auxiliary use and less on/off restart
IMPROVING HPWH CONTROL: HPWH SMART CONTROL

Impact on the comfort and energy bill

- Reducing energy bill in average by 20%
 - Improving energy performance and valorizing TOU period better

- Increasing discomfort
 - Especially in highly variable daily draw-off profiles
 - Need for a boost function – available with the inverter

<table>
<thead>
<tr>
<th>Tapping profile</th>
<th>Discomfort Rate (nb of events)</th>
<th>Cost (euros/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n°</th>
<th>Average daily volume [40°C l/day]</th>
<th>Std. deviation [40°C l/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>125</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>107</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>157</td>
<td>12</td>
</tr>
</tbody>
</table>
A detailed HPWH model was validated experimentally (<5% error) able to perform standard test sequences
No strong improvement potential was found on the basic design of the HPWH cycle
A simple rule based control scheme allows to reduce the bill by up to 20%

Perspectives
- Optimize the HPWH thermodynamic cycle
- Strengthen the actual parametric study
- Develop optimal HPWH control algorithms
Thank you

Further questions:
kevin-ruben.deutz@edf.fr
ANNEX 1 – HPWH PERFORMANCE AS A FUNCTION OF BOUNDARY CONDITIONS