Benefits of integration between heat pumps and food refrigeration systems for commercial applications.

An example of efficient energy recovery for Near Zero Energy Buildings

Sergio Maria Capanelli
Carel Industries Spa
16th of May 2017
Introduction

New solutions for HVAC/R market

Could water loop technology be a solution!?

YES!

If each unit is also equipped with EEV and BLDC variable speed compressor water loop could be a better solution.
Introduction

Electronic expansion valve (EEV)
- Control of evaporation and condensation
- Keep the unit stable and increase efficiency
- Adapt the cabinet to water loop working condition

BLDC compressor
- Modulate power according to request
- Reduce number of ON-OFF cycles
- Optimize working conditions
Introduction

Compressor: ON-OFF vs BLDC

<table>
<thead>
<tr>
<th>Features</th>
<th>On-Off</th>
<th>BLDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal cooling capacity</td>
<td>2 kW</td>
<td>2 kW</td>
</tr>
<tr>
<td>Compressor maximum cooling capacity</td>
<td>2.4 kW</td>
<td>2.4 kW</td>
</tr>
<tr>
<td>Actual cooling capacity</td>
<td>1.5 kW</td>
<td>1.5 kW</td>
</tr>
<tr>
<td>Air set point</td>
<td>2 °C</td>
<td>2 °C</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>18 °C</td>
<td>18 °C</td>
</tr>
<tr>
<td>Evaporation temperature</td>
<td>-11.3 °C</td>
<td>-5.5 °C</td>
</tr>
<tr>
<td>Condensation temperature</td>
<td>28.9 °C</td>
<td>21.2 °C</td>
</tr>
</tbody>
</table>

Estimated energy saving rate: **35%**
Plant description

- Built in 2016, North of Germany
- Annual average temp.: 8.8 °C

<table>
<thead>
<tr>
<th>Type of Cabinet</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature (LT)</td>
<td>17</td>
</tr>
<tr>
<td>Medium temperature (MT)</td>
<td>23</td>
</tr>
</tbody>
</table>

Condensation average temperature of cabinet: 25 °C
Plant description

R-744 Heat pump

Gas cooler

Heat recovery

CO₂ compressors

CO₂ accumulator

LT Cabinet
MT Cabinet

Bluebox

Water storage tank

Pumps
Plant description

<table>
<thead>
<tr>
<th>Features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Capacity (trans-critical)</td>
<td>90 kW</td>
</tr>
<tr>
<td>Cooling Capacity (sub-critical)</td>
<td>72 kW</td>
</tr>
<tr>
<td>Evaporation temperature</td>
<td>4 °C</td>
</tr>
<tr>
<td>Outlet water temperature (heating)</td>
<td>42 °C</td>
</tr>
<tr>
<td>Inlet water temperature (heating)</td>
<td>25 °C</td>
</tr>
<tr>
<td>Water tank with evaporator</td>
<td>700 liters</td>
</tr>
<tr>
<td>Compressors (Bitzer)</td>
<td>3 (1 V.S. + 2 On-Off)</td>
</tr>
<tr>
<td>COP (trans-critical)</td>
<td>2.6</td>
</tr>
<tr>
<td>COP (sub-critical)</td>
<td>7.8</td>
</tr>
</tbody>
</table>
Test and results

• First cycle of measurements: Jan.-Feb. 2016
• Second cycle of measurements: Mar. 2016
• Water loop for the cabinet is organized in 9 zones (topology, pipe length optimization)
• Test data from zone 6: here connected on the loop 5 cabinet dedicated to milky products
• Between the test sessions, the regulation parameters for R-744 heat pump has been refined and tuned in a more precise way
Test and results

Measurements have been acquired for **24 hours every day**, also during closing time on Sunday.

![Water inlet temperature](image1)

![Water outlet temperature](image2)

![Water inlet temperature](image3)

![Water outlet temperature](image4)
Test and results

Effect of PID tuning on water outlet temperature

Before PID tuning

After PID tuning
Test and results

Effect of PID tuning on evaporation temperature

- More precise regulation of EEV
- Reduced number of unnecessary switch on and off of the two On-Off compressors
Test and results

Effect of PID tuning on energy consumption

- Average reduction (2-3%)
- Reduction of peaks
Test and results

Cooling system failure test

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
<th>Water Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Test starts: the heat-pump chiller is switched off</td>
<td>17.5 °C</td>
</tr>
<tr>
<td>11:25</td>
<td>Water temperature reaches the peak value</td>
<td>41 °C</td>
</tr>
<tr>
<td>11:30</td>
<td>First cabinet stops for temperature control alarm</td>
<td>41 °C</td>
</tr>
<tr>
<td>11:30</td>
<td>The heat pump/chiller is switched on again</td>
<td>41 °C</td>
</tr>
<tr>
<td>11:50</td>
<td>Water temperature decrease to an efficient temperature level</td>
<td>24 °C</td>
</tr>
</tbody>
</table>

![Temperature Graph](chart.png)
Conclusions

• Integration of air conditioning and refrigeration is possible with benefits to both.

• The tuning phase assures a first level integration between the heat pump and the cabinet, thanks to the improvement of the stability of water loop working conditions.
Conclusions

• Opportunities to get further improvements:

 ➢ Integration of supervisory system to coordinate controls (Plant integration)

 ➢ Optimization of heat pump in partial conditions (System efficiency)

 ➢ Cabinet equipped with low GWP refrigerants (CO₂ emission reduction)